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Abstract

A gap has been identified between Reinforcement Learning, which is based on early
theories of animal conditioning, and current theories of conditioning from the field of
Associative Learning in Psychology. In this thesis an attempt is made to improve an
instance of Reinforcement Learning, called Q-Learning, by decreasing this theoretical
gap on some accounts. Specifically, the Rescorla-Wagner equation for classical con-
ditioning is utilized and combined with the functional framework of the Q-learning
algorithm in order to achieve generalization.
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Chapter 1

Introduction

1.1 Hypothesis and aim
The aim of this project is to improve an instance of reinforcement learning, called
Q-learning, on some accounts by incorporating theories of classical and instrumental
learning from Psychology, by extending the underlying framework (Markov Decision
Processes) and amending the way in which learning is taking place in such a frame-
work. The hypothesis is thus stating that Q-learning can be improved by incorporating
theories of animal learning from Psychology in the framework in which it is function-
ing.

1.2 Motivation
In order to set the stage for the motivation behind the aim, the identified problems have
been briefly outlined below. It is not the purpose to explain these problems in detail
in the introduction, as a further and elaborate account of the problems will be given
in the literature survey. However, the reader will at least know what to expect from
subsequent chapters, as the motivation behind the aim is manifested in the problems
that the work behind this report have been trying to solve. In the general case, these
problems refer to the goal of maximizing a reward over time by exhibiting sequences
of actions that result as a consequence of this goal. Additionally, this problem carries
with it other problems that are due to long-term vs. short-term reward maximization,
generalization of learned action sequences to other environments, and learning in large
and complex environments. Despite the apparent success of reinforcement learning
techniques in many domains (e.g. [Samuel 1967, Tesauro 1995, Singh & Bertsekas
1997]), the problems remain and prohibit their application to large state spaces [Alonso
& Mondragón 2005]. The following problems have not been extensively remedied in a
consistent manner:

1. Exploitation-exploration equilibrium: Finding the right balance between the
exploitation of actions that are known to yield reward, versus the exploration of
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actions that might turn out to give a higher reward. This is a problem of keeping
an ”open mind” towards potentially better strategies.

2. Temporal discounting: Modelling long term goals versus short term goals through
use of reward discounting. How long into the future should an agent consider its
well being? If long term goals are most important then this might slow down
learning because of the many possible action sequences. Conversely, the out-
weighing of long term goals in favor of short term goals, may result in sub-
optimal strategies.

3. Generalization: Learning is dependent on the reward structure, and so therefore
the learning has to start over when presented with a new problem. Additionally,
situations, (also known as stimuli), are considered as irreducible entities in rein-
forcement learning, which hinder the transition of learning to similar situations.

4. Large sized problems: In order to learn the best strategy in an environment, all
situations have to be visited repeatedly ad infinitum. Convergence to an optimal
strategy is prohibited by large state spaces, due to the requirement of repetitive
visits to all situations. This is also a problem of generalization. Quite often
will different, but similar situations reoccur at later times in an environment. By
merely considering situations as irreducible entities, the knowledge will fail to
transfer to these new, but similar situations.

Reinforcement learning is based on early theories of instrumental learning, specifically
the ”Law of effect” as brought forward by [Thorndike 1911]. This theory states that
an association between a stimulus, (a.k.a situation/state), and an action is strength-
ened if followed by a positive outcome. As this theory has been proven inadequate
[Mackintosh 1983], because it fails to account for the fact that the animal is expecting
the outcome, there seems to be room for improvement in the reinforcement learning
framework [Alonso & Mondragón 2004].

1.3 Objectives
Specifically, the following objectives have been identified as crucial in answering to
the aim and making the hypothesis testable, as well as possibly helping to solve the
aforementioned problems.

1. To incorporate psychological bias in the architecture of the agent that will guide
its learning process. Internal drives will be introduced, that will make the agent
approach appetitive stimuli and avoid aversive stimuli. Additionally, exploration
will be introduced as a specific type of drive. This is an idea of abandoning the
”tabula rasa” approach of learning which is employed in reinforcement learning.

2. To endow the agent with the ability to form other types of association S-R asso-
ciations. Associative theory envisages three types of association:

• Stimulus-Response (S-R) associations.
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• Stimulus-Stimulus (S-S) associations.

• Response-Outcome (R-O) associations.

3. To take into account associative theory’s conception of event representation.

4. To redefine outcomes as comprising sensorial and motivational elements.

5. To take into account the fundamental conditions of association formation pro-
posed by associative theory.

1.4 Research questions
It is contended that the aforementioned objectives will help solve the problems that
have been identified with reinforcement learning. The research questions are thus spec-
ified in light of these problems:

1. Exploration-exploitation equilibrium: By considering exploration as a drive,
S-S associations will form, allowing the agent to form a model of the environ-
ment, which in turn will help to discard unsuccessful exploratory policies.

2. Temporal discounting: Factors other than the immediate temporal contiguity
between events or actions and their outcomes are integrated in the learning struc-
ture, and modulate the absolute value of the reinforcers.

3. Generalization: Associative theory treats stimuli as compounds of elements,
each of which has an associative strength. It follows that two stimuli compounds
which share some of these elements thus share some of their associative strength.
Generalization follows directly from this analysis.

4. Large sized problems: All the factors included in the structure of learning will
reduce the processing required. Based on stimulus generalization, new and larger
environments will share elements and relationships with smaller ones, facilitat-
ing learning and reducing computational complexity.

1.4.1 Experiments to test hypothesis and objectives
Three types of experiments will be employed to test the relative merits of the resulting
learning model with regards to Q-learning, and provide results to answer the research
questions, support or undermine the hypothesis, and justify the objectives:

• Convergence: It will be tested whether the algorithms converge for scenarios of
different complexity. Additionally, the speed of convergence to optimality will
be tested for the same scenarios. This will provide results to discuss research
questions 1and 2.

• Generalization: Experiments involving scenarios of different complexity will
be employed to test whether the algorithms are able to use learning experience
from one situation to a similar situation. This will provide results to discuss
research questions 3 and 4
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• Avoidance of aversive situations: An experiment will test whether the algo-
rithms are able to avoid situations of low utility. This will provide results to
discuss research question 1.

1.4.2 Evaluation criteria
The resulting algorithm has been tested and evaluated against the Q-learning algor-
tihm in scenarios of various degrees of complexity. Algorithm performance has been
measured according to the following criteria:

1. Eventual convergence to optimality (that is, provable guarantee of asymptotic
convergence to optimal behavior).

2. Speed of convergence to optimality.

3. Generalization. Assessment has been carried out on how experience from one
environment configuration can be successfully utilized in a different but similar
environment configuration.

1.5 Project beneficiaries
The research undertaken during this project is likely to be of interest to the machine
learning community, as well as to the associative learning community in the field of
Psychology. A synthesis of reinforcement learning theories with associative learning
theories from Psychology is attempted. This will provide the machine learning commu-
nity with possible indications of solutions to the problems identified in the motivation
section. Additionally, the associative learning community will gain a computational
model incorporating a small subset of their theories.

1.6 Structure of the report
The project work underlying this report has a design-and-build component in that a new
algorithm has been constructed and implemented in a learning simulator environment,
which itself has been implemented from scratch. However, this is only the supporting
framework upon which the aim and objectives are made possible and testable. The
output from the simulator, in the form of statistics and convergence plots, is used as
the supporting evidence to prove the new learning model which has been produced.
In setting the context of the project, the literature survey provides an overview of re-
inforcement learning in itself, as well as of classical and instrumental conditioning.
The methods chapter takes the role of explaining the work process during the require-
ments gathering, analysis, design and implementation of the new algorithm, as well as
the design of experiments that will help answer the research questions. Additionally,
the methods chapter presents the different components of the new learning framework.
Carrying on from the methodology chapter, the results chapter presents the output from
the different experiments and a statistical analysis on generalization. In the discussion
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chapter a formal analysis is made on the basis of the experiment results. This analysis
gives an explanation of the results, and why the new learning framework works for the
tested scenarios. Finally, the last chapter will conclude to which degree the aim has
been met by reference to the results analysis from the discussion chapter. Additionally
the work process will be evaluated and future work will be suggested.
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Chapter 2

Literature Survey

2.1 Reinforcement Learning
[Sutton & Barto 1998] present an introduction to the field of Reinforcement Learning
(RL). In their book, the reader is acquainted with the history of Reinforcement Learn-
ing, with its roots being twofold. First, the RL field is based upon Psychological the-
ories of learning by trial-and-error, that is, instrumental learning as described in early
experiments by [Thorndike 1911] and his ”Law of Effect” (more on this in section 2.3).
Secondly, techniques for solving RL problems computationally are based on theories
from ”optimal control” arriving in the 1950’s, the most influential being Dynamic Pro-
gramming [Bellman 1957a]. Psychology and Computer Science have different aims
when it comes to the underlying theory of RL. Whereas Psychology aims to describe
observable learning phenomena in animals (and humans), Computer Science aims to
exploit the models describing these phenomena in order to construct more effective al-
gorithms in terms of adaptive systems and optimal control of computational processes.

Reinforcement Learning assumes the existence of an underlying framework called
a Markov Decision Process (MDP) [Bellman 1957b, Russell & Norvig 2003]. A MDP
contains elements that are essential for the functioning of the different techniques in
RL. These elements are [Sutton & Barto 1998]; a set of states S; a set of actions
available in each stateA(s); a return function specifying the expected immediate return
when executing an action in a specific state <a

ss′ ; and a set of transition probabilities
Pa

ss′ for each state. State transitions and returns are provided by the environment,
and the set of possible actions are known a priori and intrinsically to the learning
system (agent). The transition probabilities specify a model of the dynamics of the
environment in which the agent is situated and interacts with. A return can take on any
real number, and therefore the agent is ”wired” to prefer larger returns over smaller
ones. Given this preference the long term-goal of the learning system is to maximize
the return it receives over time. This implies that each action should be chosen so as to
achieve this goal. More formally:

∀a, agreedy ∈ A(s) : agreedy Â a ⇔ <agreedy

ss′ > <a
ss′′ (2.1)

Statement (2.1) only specifies the preference over immediate returns, that is, it facil-
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Figure 2.1: A MDP showing; states (circles), arrows (transitions),rewards (number
above transition), and transitional probabilities (number in italic and parentheses above
transition)
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itates greedy action selection. However, this tells the agent little about the long-term
effects of taking an action in a specific state. Therefore, what is needed, is a preference
over state-values, where each state-value specifies the long-term effects of ending up
in that state given some policy π. A policy π defines a mapping from states to ac-
tion, i.e. it specifies the probability of taking an action in a specific state, written as
π(a, s). In a finite horizon environment, i.e. one in which a terminal state is always
reached, the state-value under a given policy is specified by additive returns [Russell &
Norvig 2003]:

V π(s) =
terminal∑

t=0

R(st) (2.2)

Conversely, in an infinite horizon environment, where it is uncertain whether a terminal
state is ever reached, the state-value is specified by discounted additive returns utilizing
an exponentially decreasing discount factor, γ, indexed by time [Russell & Norvig
2003]:

V π(s) =
∞∑

t=0

γtR(st), γ ∈ [0, 1] (2.3)

Including the discount factor has the effect of paying less attention to the value of future
states, given a sequence generated by a stochastic policy π. Of course, the importance
of future returns is modulated by the discount factor, where if γ = 0 the agent will be
immediately greedy, whereas if γ > 0 the agent will prefer accumulated returns. In
Reinforcement Learning, the task is to find the optimal policy. The value of a policy is
the expected sum of discounted returns for all state sequences generated by the policy,
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the optimal policy π∗ being the one having maximum value [Russell & Norvig 2003]:

π∗ = argmax
π

E

[ ∞∑
t=0

γtR(st)
]

(2.4)

However, equation 2.4 does not take into account the transitional model of the world.
The Maximum Expected Utility (MEU) principle, described in [Russell & Norvig
2003], and with foundations in early philosophical theories by [Arnauld 1662], does
consider both the value of an outcome and the probability of that outcome occurring,
e.g. winning the grand prize in a lottery, which has high value but very low probabil-
ity. The value of an optimal policy can thus be restated in light of the MEU principle
[Russell & Norvig 2003]:

π∗ = argmax
π

∑

s′
Pa

ss′V (s′) (2.5)

Similarly the state value function can be specified in light of equation 2.5 in what is
known as the Bellman optimality equation [Bellman 1957a]. The insight of Bellman
was that the value of a state can be expressed in terms of the immediate return in that
state and the value of its neighboring state, given the action that leads to the state with
highest utility. This concept is called bootstrapping, that is, specifying the value of
a state based on the values of successive states. The equation thus has a recursive
definition [Bellman 1957a, Sutton & Barto 1998]:

V ∗(s) = max
a

∑

s′
Pa

ss′

[
Ra

ss′ + γV ∗(s′)
]

(2.6)

As can be deduced from equation 2.6 a ”lookahead”-model is needed in order to find the
optimal action, i.e an optimal action is defined in terms of the optimal next state that it
leads to. Therefore equation 2.6 implies no explicit preference over actions. However,
the Bellman Optimality equation can similarly be defined for state-action pairs (termed
Q-values), thereby discarding the need for a ”lookahead”-model [Bellman 1957a, Sut-
ton & Barto 1998]:

Q∗(s, a) =
∑

s′
Pa

ss′

[
Ra

ss′ + γ max
a

Q∗(s′, a′)
]

(2.7)

The problem of reinforcement learning is one of finding the optimal policy, i.e. the
one that yields the highest return, which implies finding the optimal action for each
state; the action that leads to the state with greatest opportunity for future returns.
Due to the complexity and the size of the state space of many environments, it is not
possible to conclude a preferential order over all possible state sequences for every
policy combination. All reinforcement learning methods therefore employ some form
of search in the space of all policies. In general, the state-value functions, (or state-
action value functions), provide the overall utility of a policy, and therefore the RL
problem can be stated in terms of two interacting processes [Sutton & Barto 1998]:

1. Policy evaluation: making the current state-values consistent with the current
policy, (that is, provide its true value)
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2. Policy improvement: Improving the policy based on the current state-value func-
tions.

Because an action that seems immediately worse than another, might be better in the
long run, there will always be the dilemma whether to exploit the current policy or
explore alternative actions in order to improve the policy. Hence, there is a tradeoff to
be made between exploration and exploitation.

2.1.1 The concept of state and the Markov property
In Reinforcement Learning a state is anything the agent can perceive in the environment
at any time-step, i.e. a signal from which the agent makes a decision as to which action
is most appropriate in a particular situation. The reason for merely making a decision
based on the current state signal, and not a conjunction of the preceding state signals
leading up to it, (the history), is the assumption of the state having the Markov property.
A state signal which encapsulates the history of states, actions, and rewards leading up
to it is said to have the Markov property, and can therefore be used solely as a decision
cue. The importance of the Markov property is due to the transitional model, which
defines a conditional probability distribution for every state s ∈ S given preceding
sequences of states, actions, and rewards. Every state s ∈ S must have the Markov
property, for the transitional model to be able to provide a unique sequential sequence
of transitions. More formally [Sutton & Barto 1998]:

∀st+1,∀rt+1, ∀(st, at, rt, st−1, at−1, . . . , r1, s0, a0) : Markov(st) ⇔
Pr{st+1, rt+1|st, at, rt, st−1, at−1, . . . , r1, s0, a0} = Pr{st+1, rt+1|st, at}

2.1.2 Dynamic Programming
For an environment with n states there are n Bellman equations, and these provide a
unique solution for the optimal policy. i.e. the optimal policy is found by solving the
set of non-linear optimality equations given by equation 2.6 for all n states. Because
of the non-linear nature of these equations they cannot be solved simultaneously, the
max-operator being non-linear [Russell & Norvig 2003]. For this reason several ap-
proximate techniques exist that are able to solve these equations iteratively, based on
initial estimates of both optimal policy π∗ and state values. Provided in algorithm 1 is
pseudocode for one of these techniques, namely Value Iteration, in which an initial es-
timate of the value functions is used to iteratively improve both the value functions and
implicitly the policy (as given in [Sutton & Barto 1998]). The value iteration algorithm
will converge in the limit of θ, provided that the environment is finite or γ < 1.

Through the definition of Dynamic Programming, due to the Bellman optimality
functions for the optimal policy and the optimal value functions, the techniques used to
solve these equations require full models of the environment in which they are work-
ing [Sutton & Barto 1998]. The provision of complete transitional models over envi-
ronments is somewhat of a luxury, and although approximations of these models can
be learned from experience, it would generate extreme computational costs for large
state spaces. Additionally, as can be seen from the recursive definition of the Bell-
man equation 2.6, Dynamic Programming performs full backups in order to compute
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Algorithm 1 The Value Iteration algorithm
1: Initialize V arbitrarily, e.g., V (s) = 0, for all s ∈ S

2: Repeat
3: ∆ ← 0
4: For each s ∈ S:
5: v ← V (s)
6: V (s) ← R(s) + max

a

∑
s′
Pa

ss′γV (s′)

7: ∆ ← max(∆, |v − V (s)|)
8: until ∆ < θ (a small positive number)

9: Output a deterministic policy, π, such that
10: π(s) = argmax

π

∑
s′
Pa

ss′γV (s′)

value functions. For environments with large state spaces this yields combinatorial
explosion, (for stochastic policies), [Sutton & Barto 1998], again adding to the compu-
tational costs and memory requirements. For these reasons Dynamic Programming can
only provide techniques that have practical utility in off-line scenarios, i.e. in which
the optimal policy is computed before it is actually utilized.

2.1.3 Monte Carlo methods
As described in the previous section, Dynamic Programming yields extreme compu-
tational costs and memory requirements in large state spaces, due to its requirement
of full state value backups and a complete transitional model of the environment. Un-
like Dynamic Programming, Monte Carlo methods do not require complete knowledge
about the environment and performs only sample state-value backups (albeit full), due
to the fact that these methods utilize sample interactions with the environment to esti-
mate state-values [Sutton & Barto 1998]. From this incomplete, but often representa-
tive experience, it is possible to solve the Reinforcement Learning problems by averag-
ing sample returns. As is clear from the recursive definition of the Bellman optimality
equation (2.6), Dynamic Programming ”bootstraps”, that is, computes state value func-
tions based on estimates of other state value functions. Monte Carlo methods, on the
other hand, compute state value functions based on sample returns generated by inter-
action with a subset of the environment. Considering this sampled experience, a model
of the environment is not needed. It is possible to evaluate any policy π by utilizing
Monte Carlo sampling methods. The evaluated policy is then used to generate state-
action sequences, which in turn yields return sequences. A representative Monte Carlo
method for policy evaluation is First-Visit MC [Sutton & Barto 1998] as demonstrated
in algorithm 2.

Monte Carlo methods have several advantages over Dynamic Programming, mainly
in terms of savings in computational costs. Optimal policies can be learnt from direct
interaction with the environment, without any explicit transitional model. This allows a
focus to be made on a subset of the state space of the environment, which actually may
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Algorithm 2 First-visit MC
1: Initialize:
2: π ← policy to be evaluated
3: V ← an arbitrary state-value function
4: Returns(s) ← an empty list, for all s ∈ S

5: Repeat forever:
6: (a) Generate an episode using π
7: (b) For each state s appearing in the episode:
8: R ← return following the first occurrence of s
9: Append R to Return(s)

10: V (s) ← average(Return(s))

prove to be a representative sample. Because of the sampled episodic returns on which
Monte Carlo methods are based, the First visit policy evaluation algorithm (alg. 2)
makes no use of the Bellman equation, and hence does not have the strict requirement
that every state must have the Markov property. For strict policy evaluation, as in
algorithm 2, MC will converge to the true state-values provided that an infinite amount
of visits is made to all states [Sutton & Barto 1998].

2.1.4 Temporal Difference Learning
Temporal difference (TD) learning is a hybrid of Dynamic Programming and Monte
Carlo methods. First, as Dynamic Programming does, it ”bootstraps”, that is, esti-
mate state-values based on successive state-values. Secondly, it approximates average
returns based on sample interactions with the environment, like Monte Carlo does. Be-
cause TD-learning uses sample interactions to estimate state-values, it does not require
a transitional model of the dynamics in the environment. In other words the transi-
tion probabilities are provided implicitly by the sampled state-transition sequences,
and consequently TD-learning accumulates average return, or in other words an es-
timate of the Bellman optimality equation (2.6), given the optimal policy [Sutton &
Barto 1998]. Contrarily to Monte Carlo methods, which perform full backups at the
end of an episode, TD-learning estimates the current state-value only on the basis of
the successive state-value, like Dynamic Programming. However, unlike Dynamic Pro-
gramming, TD-learning updates its state-value estimates in increments, of which the
step-size is decided by a learning-rate parameter α [Sutton & Barto 1998]:

V (st) ← V (st) + α
[
rt+1 + γV (st+1)− V (st)

]
(2.8)

Given a finite set of episode sequences, which are iteratively used to update the state-
value estimates by applying equation 2.8, the state-values will converge to the Maximum-
likelihood estimate of the underlying Markov Decision process [Sutton 1988]. In prac-
tice this means that the policy has stabilized with regards to the state-values, or in other
words the state values, and implicitly the action preferences for each state s, represent
the parameter that has the highest probability of generating the episode sequences.
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TD-learning has close connections with the Rescorla-Wagner model of classical
conditioning [Rescorla & Wagner 1972, Sutton & Barto 1990], being a time-derivative
model of classical conditioning. It has shown the ability to model learning phenom-
ena from animal learning theories including conditioned inhibition and second order
conditioning [Sutton & Barto 1990] (more on this in section 2.3).

2.1.5 Q-Learning
As described above TD-learning can be used to learn from sampled experience, but
without having to wait until the end of the episode to perform backups. TD-learning
estimates state-values from immediate backups based on successive state-values. This
makes TD-learning suitable as an online control algorithm, where the sampled state
transition sequences and the state-values are experienced and taken into use directly.
The difference between this form of control algorithm and regular TD-learning is due
to the explicit policy specification in TD-learning, whereas an online control algorithm
derives the policy from the value functions. One example of an online control algorithm
is Q-learning [Watkins 1989, Sutton & Barto 1998]. Q-learning uses off-policy value
function estimation, or, more specifically, it has a different behavioral policy than the
optimal policy π∗ being improved. The algorithm approximates equation 2.7, and
thereby works with state-action pairs, (Q-values), instead of state-values. Algorithm
3 [Sutton & Barto 1998] shows the working of Q-learning.

Algorithm 3 Q-learning
1: Initialize Q(s, a) arbitrarily
2: Repeat (for each episode):
3: Initialize s
4: Repeat (for each step of episode):
5: Choose a from s using policy derived from Q
6: Take action a, observe r, s′

7: Q(s, a) + α
[
r + maxa′Q(s′, a′)−Q(s, a)

]
8: s ← s′

9: until s is terminal

Q-learning works by bringing the behavior policy closer to the policy being esti-
mated. Therefore, the algorithm can be seen as performing policy evaluation and policy
improvement simultaneously. The Q-learning algorithm will converge with probability
1 to the true Q-values Q(s, a), under the condition that the step-size parameter α is
gradually decreased. Otherwise, under a constant step-size, it converges in the mean
of α. In order to illustrate the sequential progress of Q-learning, figure 2.2 presents
a simple non-exhaustive example of Q-value updates. From the point of view of Psy-
chology, online TD-Learning, and thus Q-learning, explains the phenomena of second-
order conditioning, or the anticipation of future reward, by predicting the accumulated
reward that follows a state given a specific policy [Dayan & Abbot 2001], (more on this
in section 2.3). This is evident from figure 2.2 as the reward received at the goal state is
propagated gradually backwards to the start state. The example in figure 2.2 employs
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an ε-greedy exploration policy, where ε ∈ [0, 1]. Under such a policy the non-greedy
action is selected with a probability of ε. Another explorative policy is Softmax, which
computes the probability of selecting an action a in a state s by the following equation
[Sutton & Barto 1998]: π(s, a) = eQ(s,a)/τPn

b=1 eQ(s,b)/τ , where τ > 0. High values of τ will
result in nearly equal probabilities for all actions, whereas low values will favor greedy
action selection. A third way of ensuring exploration is to initialize Q-values accord-
ing to a positive estimate, that is, to make the algorithm falsely believe that previously
unvisited states are better than other states. This in turn causes exploration based on
deceitful estimates.

Q-learning has traditionally been the most popular reinforcement learning tech-
nique [Alonso & Mondragón 2005], due to its simplicity. First, it can be defined almost
completely in terms of the Q-value equations. Secondly, these equations apply only to
states at the time they are visited, making it suitable as an online control algorithm.
Thirdly, the two processes of the reinforcement learning problem, policy evaluation
and policy improvement, are closely intertwined in an abstract way, only controlled
by an exploration parameter, (eq by ε in an ε-greedy policy). Additionally, Q-learning
is a so called model-free learning algorithm [Kaelbling, Littman & Moore 1996], in
that it does not require any transitional model of the environment. Finally, the pol-
icy which is being evaluated and improved is not stored explicitly, it is derived from
the Q-values. In sum, Q-learning exhibits its simplicity because both the transitional
model and the optimal policy is a mirror-image of the Q-values, thereby cutting mem-
ory requirements. Q-learning is exploration insensitive in that it always estimates the
current greedy policy regardless of the behavior policy being followed, and therefore
the Q-values will converge to the optimal values. This is the most important reason for
the success and popularity of Q-learning [Kaelbling et al. 1996].

2.1.6 Problems with Reinforcement Learning
[Alonso & Mondragón 2005, Kaelbling et al. 1996] have identified several problems
with temporal difference learning methods, Q-learning being one instance:

Exploration-exploitation equilibrium: In order to converge with a probability of
1 to the true state-value functions V (s) for a policy π, temporal difference learning
methods have to decrease the step-size parameter α according to the true sample return
average V (st) = 1

t+1

[
rt+1 − V (st)

]
[Sutton & Barto 1998], the fraction being the

step-size parameter, i.e. αt(s) = 1
ts

. However, this requires a stationary environment,
one in which the underlying dynamics does not change over time. Stationary environ-
ments are not common in real world problems [Sutton & Barto 1998]. Therefore, to
cater for stochastic environment dynamics, in which the policy has to be constantly
reevaluated, the step-size parameter α is being held constant. Thus, in such a case,
TD-learning will converge in the mean of α, but will continue to vary in response to
the most recent rewards. The problem of exploration-exploitation balance is hence,
(although not exclusively), one of readjusting the policy to a non-stationary environ-
ment. As have been discussed earlier in section 2.1, exploration-exploitation balance
is also important for speed of convergence. Once a policy has been evaluated, policy
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Figure 2.2: An example of Q-learning working in a grid environment
∀s ∈ S : ∀a ∈ A(s) : ass′ ∧ s′ 6= s ∧ s′ 6= sgoal → rss′ = 1

∀s ∈ S : ∀a ∈ A(s) : ass′ ∧ s′ 6= s ∧ s′ ≡ sgoal → rss′ = 100
∀s ∈ S : ∀a ∈ A(s) : ass′ ∧ s′ ≡ s ∧ s′ 6= sgoal → rss′ = 0

sgoal = (2, 2)
sstart = (0, 0)

∀s ∈ S, ∀a ∈ A(s) : Q(s, a) = 0

∀s ∈ S : A(s) = North, East, South, West

Discount factor γ = 0.9
Step-size parameter α = 0.1

The initial Q-values for each state s in the grid:
0 0 0
0 0 0
0 0 0

The resulting Q-values after applying the policy πε−greedy for one episode:
0.1 0.1 0

0 0.1 10
0 0 0

Action sequence taken from sstart: East,South,East,South
Affected Q-values:
Q((0, 0), East) ← 0 + α

[
1 + γ0− 0

]
Q((1, 0), South) ← 0 + α

[
1 + γ0− 0

]
Q((1, 1), East) ← 0 + α

[
1 + γ0− 0

]
Q((2, 1), South) ← 0 + α

[
100 + γ0− 0

]

The resulting Q-values after applying the policy πε−greedy for a second episode:
0.199 0.199 0

0 1.09 19
0 0 0

Action sequence taken from sstart: East,South,East,South
Affected Q-values:
Q((0, 0), East) ← 0.1 + α

[
1 + γ0.1− 0.1

]
Q((1, 0), South) ← 0.1 + α

[
1 + γ0.1− 0.1

]
Q((1, 1), East) ← 0.1 + α

[
1 + γ10− 0.1

]
Q((2, 1), South) ← 10 + α

[
100 + γ0− 100

]
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improvement can start. In fact, the latter does not have to wait for policy evaluation to
complete. In order to perform policy improvement, an agent will have to explore new
actions.

Temporal discounting: In reinforcement learning a discount factor, (0 ≥ γ ≥ 1),
is utilized to modulate the importance of future reinforcement. The discount factor
is most readily seen as a mathematical trick to bound the infinite sum [Kaelbling
et al. 1996], in cases where the environment is non-episodic. A large discount factor
approaching 1 will make the agent prefer long-term additive returns, whereas a small
discount factor will make the agent greedy. The problem is then, as argued by [Alonso
& Mondragón 2005], that a large discount factor will slow down learning, and contrar-
ily a small discount factor might cause the value functions to converge to a sub-optimal
policy. The agent does not know the length of an episode, it only knows the discount
factor, which has to be set by the algorithm designer. It can be very difficult to set the
discount factor correctly in order to guide the agent towards a goal, because in some en-
vironments it can be hard to actually define the goal, or there can be multiple goals with
varying state sequence trajectories and different definitions of success. This is why a
hierarchical approach has been suggested [Singh 1992], in which sub-goals are trained
separately. An example of this is soccer, where the ultimate goal of scoring is a highly
complex task dependent on many sub-goals such as; dribbling an opponent, passing the
ball, kicking the ball in the right direction, etc. In other words, teaching an agent how
to achieve a goal based on delayed rewards is not straightforward, and depending on
the complexity of the environment would still require significant engineering, despite
the simple definition of many reinforcement learning algorithms.

Generalization: The problem of generalization is generally due to the consideration
of states as irreducible entities, and additionally because of the way in which state-
values are considered and learned [Alonso & Mondragón 2005]. In the tabular case
it is quite easy to realize that once a reward structure has been learned, there will be
no generalization if state similarity is not considered. In other words there will be no
transfer of learning from one state to another, even though the two might be similar.
How to measure similarity, however, is a whole different problem. To define a similar-
ity function which measures similarity on the basis of the dynamics of the environment
would seem to be extremely difficult, because it should ideally take into account the
actual distance between states, in terms of required changes in the environment to reach
one state from the other, which in turn calls for a model of the environment. The is-
sue with generalization and transfer of learning, is also due to the associations being
formed [Alonso & Mondragón 2005]. In RL an association between a state and an ac-
tion is formed, discarding to take into account the actual outcome of taking an action in
a state. A direct consequence of this is that the policy has to be relearned if the reward
structure changes, even though the transitional model might be static. Learning in RL
is completely dependent on the reward structure.

Large sized problems: Many environments have prohibitively large state spaces.
For instance the game of chess has been estimated to have 101056

possible game se-
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quences [Weisstein 2005]. It is therefore not possible to visit all possible states, let
alone generate all sequences. Even if it was, it would still not be possible to use a tabu-
lar approach to store state-values for each state, due to finite computer memory. This is
why function approximation (FA) has been introduced in reinforcement learning. Al-
though there are many ways to use function approximation, it can be used to generalize
the value of one state to the value of a similar state. One example is a linear function,
consisting of a parameter vector, ~θ, having as many elements as the state signal vector
s. The value of a state can then be calculated as the dot product of the two vectors
[Russell & Norvig 2003]:

V~θ(~s) =
n∑

i=0

θisi

If there is a prediction error, that is, the function gave the wrong expected return, the
parameter vector can be moved in the opposite direction of the error, i.e. gradient
descent with regards to the prediction error [Russell & Norvig 2003]:

R =
∞∑

t=0

γtrt

~θ ← ~θ + α(R− V~θ(~s))
∂V~θ(~s)

∂~θ

There are limits as to what a simple linear function approximator , (as in the previous
example), can learn, and especially if there is no correlation between similarity of states
and their value. In fact, linearity in the state features with regards to the parameter
vector is a prerequisite for this simple FA to work. Additionally, if state features are
correlated, conjunctive features needs to be defined [Sutton & Barto 1998]. Apart
from simple linear FAs, other function approximators such as neural networks with
backpropagation learning rule and non-linear activation functions have been used to
learn an approximate state-value function in the game of backgammon (TD-Gammon:
[Tesauro 1995]). However, success with non-linear FAs is the exception, rather than the
rule. Combining FA and error correction rules like the one used in temporal difference
learning (eg. V (s) ← V (st)+α

[
rt+1 +V (st+1)−V (st

]
), can lead to uncontrollable

error propagation. More specifically, FA tries to minimize a mean return prediction
error over all states, and thus requires a static training set where the correct return
is known for each state, (a.k.a. supervised learning). Formally, the parameter vector
would be optimized in terms of minimizing a mean squared error over all states [Sutton
& Barto 1998, p.195]:

MSE(~θt) =
∑

s∈S

[
V π(s)− Vt(s)

]2

It is evident that if a local error is reduced by changing the FA parameters, other state-
values will change as well, and thereby adding another search process to the problem,
i.e. the one of tuning the FA to provide the true value function with regards to a policy.
If the policy is constantly changing, hence resulting in a non-static training set, there
will be no convergence to the correct value function because the MSE will have no
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basis of comparison from one policy to the other. However, this is not a problem in
off-line learning where the policy is fixed and gradient descent can take place over a
subset of the state space. The FA will then converge to a local optimum, (i.e. the
smallest possible MSE), under assumptions of a decreasing step-size parameter. This
local optimum may be a close match to the correct value function [Sutton & Barto
1998]. A fixed policy requires previous learning, and a stationary environment, both of
which are uncommon for large state spaces.

2.2 Credit assignment problem
The credit assignment problem is one of establishing the level of responsibility of a
state or action in generating a reward. As have been discussed earlier, a policy defines
a mapping from states to actions, and an optimal policy maximizes the reward signal
received over time. Thus, the state-value or state-action-value functions can be seen
as providing an indicator of how much responsibility a particular action, (or an action
leading to a beneficial state), has in maximizing the reward signal, i.e. the expected
reward. In a long chain of alternating state-action sequences, only the last action may
bring about reward. It would then seem logical to credit actions less and less, the
further away from the actual reward they are, because there are usually costs involved
with reaching the actual reward. However, they might still be crucial in bringing about
the actual reward in the end. Reinforcement learning, as demonstrated in Q-learning
(see fig. 2.2), propagates a reward signal backwards through the state-action sequence
leading up to the reward. The credit thus represent the additive expected return by
following the optimal policy from that state and onwards. This is the solution that
reinforcement learning brings to the temporal credit assignment problem, i.e. how to
credit each action in a sequence of actions leading up to a reward in the end. If an action
does not lead to reward, then it will be discredited. In temporal difference learning,
prior to convergence, the credit of each state is changed according to a prediction error
(eq. 2.8), so for a state sequence vector the error correcting rule is moving towards the
real credit in terms of the correct return [Sutton 1988]. In sum, reinforcement learning
is solving the temporal credit assignment problem by means of return predictions.

Psychology has a slightly different way of looking at the temporal credit assign-
ment problem. [Mackintosh 1983] describes the association between a stimulus (state)
and a reinforcer (return) as being modulated by the temporal contiguity between the
two events. It is established that the association grows more rapidly if the stimulus
is presented in close temporal proximity with the reinforcer, and the learning rate de-
creases as the time interval increases. What is more important, however, is whether a
second stimulus is presented in between the two events separated by this interval. If a
second stimulus is presented after the first stimulus and before the reinforcer, this sec-
ond stimulus will become associated with the reinforcer, while the association between
the first stimulus and the reinforcer will be attenuated. In other words, the stimulus
most close in temporal proximity with the reinforcer will become most strongly asso-
ciated with the reinforcer. To explain this it is assumed that the predicting event, (e.g.
event 1 predicts event 2), leaves a trace which gradually decreases with time [Gabriel
& Moore 1990, Kehoe, Schreurs & Graham 1987]. This trace is thus working as a

17



modulator of the gain in association between event 1 and 2.
Additionally, the credit assignment problem has a structural element [Kaelbling

et al. 1996]. A state signal having the Markov property, incorporates a lot of informa-
tion, ideally the whole history of state-action-reward sequences leading up to the state.
In reinforcement learning the state signal is seen as an irreducible entity. The agent
does not reason explicitly with the information provided in the state signal. It only
takes into account the state value, provided by the expected additive returns. The addi-
tive return is an abstraction of the actual outcome, allowing the different reinforcement
learning techniques to be applied to a whole range of problems without taking into
account any information provided by the state signal. It is evident though, [Kaelbling
et al. 1996], that different elements of the state signal might have different levels of
importance to the problem being solved by the agent. This is known as the structural
credit assignment problem, ”the problem of deciding how the different aspects of an
input affect the value of the output” [Kaelbling et al. 1996].

An implication of the structural credit assignment problem, is the spatial contiguity
of events. As is described in [Mackintosh 1983], if two events are presented in close
spatial proximity, they tend to be more easily associated than if they were presented far
away from each other. This effect can be seen as a consequence of the number of stim-
uli present. However, in Psychological theories of learning, when several stimuli are
present in the current state, they are described as competing for the gain in associative
strength with the succeeding event. In other words, they all gain associative strength
relative to their attentional value [Gabriel & Moore 1990]. As have been described ear-
lier, states are considered as irreducible entities in a Markov Decision Process. There-
fore there is never more than one stimulus present in any state. Additionally, there is
never more than one time-step between any two successive states, and the time-step is
constant for the tabular case. Still, the discriminatory power of a state is dependent on
the granularity of the state space, i.e. the number of spatially adjacent states surround-
ing a state. Thus, in reinforcement learning with irreducible state signals, the structural
credit assignment problem is reduced to spatial contiguity in time, whereas associative
learning considers several stimuli simultaneously.

2.3 Associative Learning
Associative learning is a field of Psychology concerned with the study and the con-
struction of models to explain the acquisition and extinction of associations between
different stimuli, and stimuli and responses, in animals1. A stimulus is anything present
in the environment that the animal can perceive, and that elicits a response of some
sort from the animal. In any situation the animal finds itself in, several stimuli may
be present, implying the ability to discriminate or generalize over stimuli, in order to
determine what is important in the environment in terms of survival. During experi-
mental studies Psychologists control the presentation of stimuli over trials and measure

1A different ontology is used in Psychology to describe elements; a state is known as a Stimulus (S) (or a
stimuli compound), an action is known as a Response (R), and the new state s′ that appears after a has been
performed in state s is known as the Outcome (O), (which is also a Stimulus or a stimuli compound) [Dayan
& Abbot 2001].
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the associations being formed by gathering statistics from animal responses. Tradition-
ally the animals are trained to form associations between a stimulus that they have no
instinctive aversion or excitation towards, (i.e. a neutral stimulus), hence called the
conditioned stimulus (CS), and contrarily a stimulus that they naturally want or are
afraid of, termed the unconditioned stimulus (US). The US is thus utilized to condition
the animal in forming an association between a CS and the same US, where the asso-
ciation is measured by the animal’s conditioned response to the CS. The conditioned
response is of the same nature as the unconditioned response elicited by the animal
when presenting the US alone, and the animal has thus generalized the CS with the US
to some degree.

There are two main threads in associative learning [Mackintosh 1983]; classical
(Pavlovian) conditioning and instrumental conditioning. The two differ in the re-
sponses that animals evoke during formation of associations between a CS and a US.
In classical conditioning the response has no effect on the environment, i.e. the animal
responds passively and has no influence over whether the US will be brought forward
or not. This paradigm was first described by [Pavlov 1927] in his book ”Conditioned
reflexes”. On the other hand, in instrumental conditioning the animal learns to associate
specific stimuli with responses that provide excitatory outcomes. The animal actively
tries to change the environment to bring forward something that it wants. Theories of
instrumental conditioning were brought to light by [Thorndike 1911].

2.3.1 Classical conditioning
One of the early examples of classical conditioning was presented by [Pavlov 1927] in
his notoriously famous experiment wherein dogs were conditioned to associate a tone
with food. Initially the dogs have no natural excitation towards the tone, and therefore
the tone is a neutral stimulus. During the conditioning the tone is sounded in close
temporal proximity before the presentation of food. As opposed to the tone, which is
termed the Conditioned Stimulus (CS), the food is something the dogs naturally want
and that cause them to salivate. The food is termed the Unconditioned Stimulus (US)
and is said to elicit an Unconditioned Response (UR), more specifically the salivation.
As the tone is presented with the food an association is said to form between the tone
and the food (CS→US) and after several trials the CS alone will cause the dogs to
elicit a Conditioned Response (CR), which is the same as the UR, that is, salivation.
In sum, the mere sounding of the tone will cause salivation in the dogs, due to the
association between the tone and the food. Two explanations have been suggested in
terms of the procedural implications of classical conditioning. First it can be said to be
the process by which learns a causal model of the environment, i.e. causal relationships
between stimulus events [Sutton & Barto 1990]. Secondly, a related interpretation is
that ”classical conditioning is a manifestation of the animal’s attempt to predict the
US from cues provided by CSs” [Sutton & Barto 1990]. Either way it can be seen as
providing a predictive model of the environment. It is important to stress that under
classical conditioning, animal responses do not have any control over the delivery of
reinforcers. Their responses are simply innate preparatory or consummatory reflexes,
enabling them to better exploit or avoid the US.
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2.3.2 Instrumental conditioning
Early theories of instrumental conditioning focused on the formation of associations
between a conditioned stimulus and a response strengthened by a reinforcer, that is,
S→R associations [Mackintosh 1983]. Even though S→R associations do form, and
explain the formation of habits, they fail to explain the expectation of an outcome.
According to [Mackintosh 1983] associations are formed between representations of
events which are in fact related in the real world. S→R associations are only implicitly
connected with the outcome, through some derived value of the outcome. However,
[Rescorla 1992] notes that both S→R and S→O associations form in instrumental con-
ditioning, the role of the CS merely being one of activating a representation of the
response or outcome. [Mackintosh 1983] provides a more convincing account of in-
strumental conditioning:

”If learning is viewed as the acquisition of knowledge about the world,
then classical conditioning is a matter of learning what external events
predict the occurrence of a reinforcer, while instrumental conditioning in-
volves organisms learning which of their actions are responsible for the
occurrence of a reinforcer.” [Mackintosh 1983, p.80]

From this it is understood that response-outcome associations are formed. However,
[Mackintosh 1983] also highlights that these associations might only arise, depending
on the circumstances, in the presence of an antecedent stimulus, (the CS), thus working
as a discriminatory cue. This cue is also known as an occasion setter as described in
[Rescorla 1992]. The R→O association implies an expectation towards an outcome,
which in turn implies the ability to derive a motivational value from the outcome. This
ability is essential if the animal is to influence its own fate. In other words, the animal
must know what it wants or does not want. The value of an outcome is thus decided by
the animal’s motivational state.

An important notion in instrumental learning is that of operant behavior. If two
responses produce the same outcome, under similar conditions, they are essentially the
same. That is, the outcome of a response determines the similarity of the response
to other responses. [Mazur 1998] describes an experiment in which rats had to wade
through a maze filled with a few inches of water in order to reach a reward. Subse-
quently, after the rats had learned this task, the water-level in the maze was increased
and the rats were placed at the beginning of the maze again. Surprisingly, the rats did
not have to relearn a new set of behaviors. Instantaneously, they swam through the
maze, following the same path as they had learned by wading in the lower water-level.
Thus, the rats learn a sequence of turns, not linked to any particular set of behavior. It
is partly this sort of adaptability and flexibility that makes animal learning superior to
current models of computational reinforcement learning.

2.3.3 The Rescorla-Wagner model for classical conditioning
The Rescorla-Wagner model [Rescorla & Wagner 1972] is a trial-level model for pre-
dicting the formation of associations between a CS and a US. In this model the as-
sociation between a CS and a US is presented as the amount of associative strength,
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written as V , that a CS compound manifests with regards to a subsequent US. The
change in associative strength is adjusted from trial to trial until reaching an asymptote
λ. Thus, the change in associative strength at a given trial, ∆V , is changed according
to the discrepancy between the current level of associative strength in the CS, (V ), and
the asymptote (the maximum associative strength λ), as determined by the US. The
actual change is modulated by two learning rates, α and β, specific to the CS and the
US respectively. The most notable feature of the Rescorla-Wagner model is that the
change in associative strength at a given trial is determined not only by the discrepancy
between a single CS and the US, but by the sum of associative strengths of all present
stimuli. Put formally, the following equation is the basis of the model [Rescorla &
Wagner 1972]:

∆Vij = αiβj(λj −
n∑

i=0

Vij) (2.9)

In equation (2.9) the subscript j refers to the US, whereas the subscript i refers
to one of the n present CSs, (stimuli compound). As mentioned earlier αi refers to
a learning-rate specific to one of the present CSs, whereas betaj refers to the US-
specific learning-rate. These are both in the range [0, 1], and are determined by the
strength of the respective stimuli. The asymptote λj , represents the strength of the US.
During real experiments with conditioning of animals, the conditioned response (CR)
is a direct measure of the associative strength. In the case of Pavlov’s dogs, the change
in associative strength was measured by the increase in salivation.

A number of different learning phenomena can be explained by the Rescorla-
Wagner model, each of which will be explained in the following paragraphs.

Acquisition: Acquisition is the iterative gain in associative strength between a CS
compound and a US, when λ is greater than zero. Acquisition is also known as ex-
citatory conditioning. Each CS in the compound will gain associative strength with
the US according to the current discrepancy of the asymptote and the sum of associa-
tive strengths of the compound, multiplied by the learning-rate for the CS in question,
and the US-specific learning rate. The associative strength of the compound will con-
verge when the discrepancy is zero, whereupon no change will occur. In the beginning,
when the associative strength of the stimuli compound is zero, the discrepancy will be
large, and therefore the change in associative strength will be large. As the discrep-
ancy decreases the change decreases as well. This is the idea of surprise; if the US is
completely unexpected, more will be learned than if the US was expected.

Extinction: The opposite process of acquisition is extinction, (or inhibitory condi-
tioning). If after a stimuli compound has been paired with an US, and the associative
strength of the compound has reached a certain level, the US is removed at subsequent
trials. In the Rescorla-Wagner model this is achieved by setting the asymptote to zero.
The change in associative strength will then be negative, because the discrepancy is be-
low zero. Conversely to the process of acquisition, extinction will drive the associative
strength to zero.
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Blocking: If a US is already fully expected, that is, the associative strength of a CS
has reached the asymptotic level, then if another stimulus is added to the compound,
this new stimulus will not gain any associative strength. In other words, it has been
blocked by the already present stimuli. An example will make things clearer: Suppose
CS1 and CS2 has been paired with US1, until the sum of associative strength in the
compound, (VCS1 + VCS2 ), has reached asymptotic level, i.e. the discrepancy is zero.
Then another stimulus, CS3, is added to the compound. The associative strength of
this stimulus is zero (VCS3 = 0) Because CS1 and CS2 already fully predict US1, the
associative strength of CS3, VCS3 , will remain zero, and nothing will be learned about
the new CS in terms of US prediction.

Conditioned inhibition: When considering the blocking example above, and taking
into account what happens if extinction occurs after blocking, the blocked stimulus will
become a conditioned inhibitor. The sum of associative strength in the two stimuli,
CS1 and CS2, have already reached asymptote, they fully predict the US. Now, CS3

is presented, but because CS1 and CS2 already predict the US, the associative strength
of CS3 will remain at zero. If the US is then removed, extinction will occur, and all
stimuli in the compound will lose associative strength. Because the associative strength
of CS3 is already zero, VCS3 will gain negative strength, and thus become a conditioned
inhibitor. This is a consequence of calculating the discrepancy based on the sum of
associative strength in the compound. As can be deduced from this, the conditioned
inhibitor will, upon reaching a certain negative level, cancel the associative strength of
other stimuli, thereby hindering their decrement to no associative strength.

Overshadowing: As mentioned earlier, different stimuli present in a compound may
have different strength, and thus their learning-rates will vary. From this it can be
seen that more salient stimuli will condition faster, than less salient stimuli. If a CS is
much stronger than the other CSs in the compound, it will overshadow the other stimuli
during learning. In other, words it will gain more associative strength and predict the
US better than the other stimuli. A stimuli with relatively higher learning-rate, αi, will
more rapidly gain associative strength.

The Rescorla-Wagner model is a trial-level model, which effectively means that
time is not taken into account. Variables such as inter-stimulus-interval (ISI), (the
time interval from the offset of the CS to the onset of US), and inter-trial-interval
(ITI), (the time between each trial), are not considered explicitly [Mazur 1998]. It has
been contended that the inter-stimuli-interval can affect the associations being formed
[Mazur 1998]. As stated by the principle of contiguity, two events occurring closer
in time are more readily associated [Mazur 1998]. However, it has been established
that ”the temporal contiguity between a CS and a reinforcer is neither necessary nor
sufficient to ensure conditioning” [Mackintosh 1983, p. 173]. The Rescorla-Wagner
model takes this into account by considering stimuli compounds. If a US is already
fully predicted by another CS, a newly presented CS will be uninformative, if it does
not ”signal a change in the probability of a reinforcer, or provide new information about
its occurrence” [Mackintosh 1983, p. 173]. [Mazur 1998] notes that time itself can be
considered as a stimulus contained in the stimulus compound; if a US is presented 10
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seconds after a CS, then the compound will consist of the CS and the delay stimulus.

2.3.4 Hierarchical modulatory relations
[Rescorla 1992] provides an alternative view of conditioned inhibition. As described
above in section (2.3.3) regarding the Rescorla-Wagner model, in which associations
are formed between stimuli compounds and a US. In such a compound each member
CS reflects a binary connection with the US, and the sum of the associative strength
of all connections constitutes the overall associative strength between the compound
and the US. A conditioned inhibitor, i.e. a CS which has negative associative strength,
effectively cancels the associations of the other CSs in the compound with the US.
As [Rescorla 1992] describes, an alternative view is that the conditioned inhibitor CS
is not at all part of the compound, but is instead associated with the compound-US
association on a hierarchical level. That is, the compound-US association is seen as a
unit with which other stimuli can form associations. It is then suggested that the CS,
also called occasion-setter, acts as a modulator of the associative strength within the
unit. The conditions under which a CS takes on a modulatory role instead of becoming
directly associated with the US, is said to be determined by the temporal relationship
between the CS, the compound and the US. If the CS is presented simultaneously with
the compound, it too enters into a direct binary connection with the US. On the other
hand, if the CS is presented before the compound, and its predictive strength of the
US is low or non-existent, it may enter into an association with the compound-US
unit [Rescorla 1992]. Hierarchical conditioning in Pavlovian learning is thus when a
CS becomes a modulator of a CS1→US association, e.g. CS2→(CS1→US). Under this
interpretation the occasion setter, CS2, is acting as a discriminatory cue stating whether
CS1 will be followed by the US or not. This notion of hierarchical relationships has
been used to explain the role of contextual stimuli and their control of animal behavior.

For instrumental conditioning, the occasion setter seems a natural element sig-
nalling a hierarchical unit, because occasion setters logically play a role as a precondi-
tion of a response if that response is to lead to the desired outcome. Normally, associa-
tions between response and outcome (R→O) are considered, but these associations are
typically cued by a preceding stimulus, i.e. the occasion setter CS [Rescorla 1992]. The
animals learn to associate certain responses with certain outcomes, but a discriminatory
cue can signal in which situations a response will lead to the desired outcome. This is
known as a three-term-contingency [Mazur 1998]. Hence, the three-term-contingency
consists of [Mazur 1998, p. 137]: ”(1) the context or situation in which a response oc-
curs (that is, those stimuli that precede the response), (2) the response itself, and (3) the
stimuli that follow the response (that is, the reinforcer)”. According to [Rescorla 1992],
the context, (or occasion setter), serves the role of controlling which R→O associations
are functional. It is thus understood that animals form R→O associations, which are
modulated by occasion setters.

2.3.5 Second order conditioning and response chains
Under Pavlovian learning theories, it seems rather restrictive that animals merely learn
to associate neutral CSs with USs on a first-order level. The same can be said for in-
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strumental conditioning, where responses become associated with USs (more on this
in the next paragraph). Indeed it has been shown experimentally that animals do form
associations between stimuli that they have no innate aversion or excitation towards
[Pearce 1997]. This process is known as second-order conditioning; the formation of
associations between two stimuli, ”even when neither of them has any unconditioned
properties” [Pearce 1997, p. 42]. An example of second-order conditioning is when a
light signals a tone which in turn signals food. In this case only the food is a US. How-
ever, by way of being associated with the US the tone attains associative properties, so
that it can, by itself, be associated with the signal.

For instrumental conditioning a similar process to second order conditioning occurs
[Mazur 1986]. The general principle, as in second order conditioning, is that otherwise
neutral stimuli becomes conditioned reinforcers. The example given by [Mazur 1986]
is that of a procedure called backward chaining, in which animals are conditioned to
perform a complex response chain. First, the animal is conditioned to pair a response
with an unconditioned stimulus, such as pressing a lever to get food. When the asso-
ciation between the response and the outcome is strengthened, the mere sight of the
lever will act as an occasion setter, (or a discriminatory stimulus), for the response.
Because the occasion setter has been paired with food, it is now said to be a condi-
tioned reinforcer, as opposed to the food which is an unconditioned reinforcer. The
conditioned reinforcer will then attract responses by itself, resulting in a new R→O
association. Going further back a step, another stimulus can become a discriminatory
stimulus for the new R→O association. A response chain is said to have formed. Ob-
viously, learning will be more rapid the nearer the unconditioned reinforcer one gets,
but the reinforcing properties of the final outcome will propagate backwards through
the chain over trials, and consequently a complex sequence of responses can be learned
gradually. In the words of [Mazur 1986, p. 135]: ”Each stimulus in the middle of the
chain serves as a conditioned reinforcer for the previous response and as a discrimina-
tive stimulus for the next response. [Dayan & Abbot 2001] describes an experiment
where a rat is placed in a water maze, filled with blurred milky water, the aim being to
find a platform at the other end of the maze, (a goal that rats will exhibit under these
circumstances due to their natural aversion of water). At first the rats will make many
mistakes, but as they are allowed several trials, errors will reduce near to the platform,
(an error being that of walking a longer path than necessary). The errors then reduce
gradually over trials backwards through the maze, until the rats have finally learned
the shortest path. In this example each crossroad in the maze acts as discriminatory
stimulus for the response of taking a certain direction. Additionally, the crossroad acts
as a conditioned reinforcer to the previous response in the chain.

2.4 The concept of stimulus
In Psychology a stimulus consists of a set of elements, where an element is some
property of the stimulus such as, in the case of e.g. light; strength, intensity, frequency,
etc [Pearce & Bouton 2001]. On the other hand a set of stimuli is called a compound.
Generalization is the transfer of associations to new, but similar situations. [Mazur
1998, p. 321] notes that ”transfer is most likely to be found when two tasks involve
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similar or identical movements in response to a similar stimulus situation”. In classical
conditioning, when a CS has been paired with a US, similar CSs will predict the same
US with associative strength according to the similarity. That is, CSs that are similar to
the original CS will elicit a CR which is similar to the response elicited by the original
CS [Mazur 1998]. For a computational model, the measurement of similarity between
two stimuli is a problem of choosing the stimuli representation. If the stimulus is
represented as a vector, where each element represent some property of the stimuli, then
these properties constitute modalities, each possibly having some continuous value. By
far the simplest account of a stimulus is where it is represented by a single property, and
where the stimulus vector represent different values of this property. Because values are
limited, there will be a maximum and minimum value. Generalization to similar stimuli
can then be determined by the absolute distance between property values. Because
animal learning theories say little about the representation of stimuli, a computational
model have quite a lot of freedom in terms of representation. This creates many open
questions. Of course, stimulus representation is dependent on the environment and the
problem being solved. The need for engineering of the representation will therefore
remain.

2.4.1 The role of attention in learning
Associative learning is based on the associations being formed between events, such
as CS and US. Depending on the salience of the stimuli, they have different learning
rates, and therefore different rates of conditioning. The initial associativity of a stim-
ulus is determined by its salience [Rescorla & Wagner 1972], but during the course of
learning the associativity will change [Pearce & Bouton 2001]. Experimental evidence
by [Lubow & Moore 1959] showed that non-reinforced exposure of a CS caused its
associativity to decline, which was illuminated by the slowing down of conditioning
on subsequent reinforced trials. Several theories aim to explain and model how this
change in associativity takes place.

[Wagner 1981] explains the change in associativity by his theory of Standard Op-
erating Procedures in memory (SOP). Under this model of learning, a stimulus can be
in three states; A1, A2 and inactive. When a stimulus is in the A1 state, it is said to
be the focus of attention, whereas an A2 state is at the margin of attention [Pearce &
Bouton 2001]. Stimuli in the inactive state do not participate in conditioning. The only
transition from inactive state to the A1 state is by direct perception of a stimulus. If
there is an association between the perceived stimulus CSA1 and a successive stimulus,
the successive stimulus will enter into the A2 state. Alternatively, a stimulus in the A1
state will eventually decay to the A2 state. Stimuli in the A2 state can only move into
the inactive state. The point of the SOP theory is that only stimuli in the A1 state can
gain associative strength. When a stimulus is repeatedly presented with no subsequent
reinforcer, it is assumed that the context, (also a stimulus), in which the stimulus is
presented enters into an association with that stimulus (context → CS). Thus the CS
will be in the A2 state by way of prediction from the context, and association with a
subsequent US is therefore retarded.

[Mackintosh 1975] postulates that the associability of a stimulus is determined by
the discrepancy of its associative strength and the asymptote of the reinforcer, (λ−VA),
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which is compared with the discrepancy of the associative strength of the compound,
(except stimulus A), and the reinforcer, (λ − Vcompound). Stimulus A is considered
a good predictor of the reinforcer if the discrepancy of stimulus A is less than that
of the compound. If the discrepancy of stimulus A is greater than or equal to that
of the compound, it is considered a poor predictor, and consequently its associabil-
ity will decrease [Pearce & Bouton 2001]. During non-reinforced trials, the stimuli
that accompany stimulus A, will predict the absence of a reinforcer equally well, and
therefore there will be loss of associability in stimulus A.

In Pearce & Hall’s [1980] theory it is proposed that the associability of a stimulus A
on trial t, is determined by the absolute value of the discrepancy, (on trial t−1), between
the asymptote of the reinforcer and the sum of associative strength of all stimuli in the
compound, including stimulus A. The associability of a stimulus will thus be high when
it was succeeded by an unexpected reinforcer on the previous trial, and conversely
it will be low when succeeded by an expected reinforcer. More formally [Pearce &
Bouton 2001]:

αAt
=| λ−

n∑

i=0

Vi |t−1

2.4.2 Elemental or configural associations
As have been mentioned earlier, animal learning theories consider states as consisting
of compounds of stimuli. Specifically, several CSs can signal a US, because there will
be several stimuli present in the environment at any time. According to the Rescorla-
Wagner model [Rescorla & Wagner 1972], each element (stimulus) of the compound
enters into an association with the US, and thus acquire associative strength accord-
ing to the CSs and USs salience. This is a so-called elemental theory of associative
learning [Pearce & Bouton 2001], where each element (stimulus) competes for the
associative strength available [Gabriel & Moore 1990], as determined by the asymp-
tote λ. A purely elemental associative learning model suffers from the inability to
solve the XOR problem [Pearce & Bouton 2001]. In Artificial Intelligence, the XOR
problem is manifested by the limitation of the linear Perceptron, which cannot dis-
criminate a conjunction of elements as signalling the opposite of each element by itself
[Negnevitsky 2002]. More formally, the Perceptron is a linear function of n variables,
n corresponding weights, and a hard limiter θ [Negnevitsky 2002]:

f(x1, x2, . . . , xn) =
n∑

i=1

xiwi − θ

output(f(x1, x2, . . . , xn)) =
{

1 if f(x1, x2, . . . , xn) ≥ 0
0 if f(x1, x2, . . . , xn) < 0

Comparing the Perceptron to the Rescorla-Wagner error correction rule (2.9), the vari-
ables in the preceding equation correspond to binary CSs (denoting presence), and the
weights determine the associative strength of each CS with regards to the US asymp-
tote. If each individual CS input has a positive weight, and thus cause positive output,
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then the Perceptron will always have positive output for any combination of the indi-
vidual CSs. It cannot encode weights so that a compound of CSs will cause negative
output, if each member of the compound already causes positive output. This is the
XOR problem. In Psychology, the XOR problem is known as negative patterning. In
negative patterning, two stimuli, A and B, are succeeded by a US, when presented
alone, and hence they both acquire positive associative strength. Then, the two stim-
uli are presented as a compound, AB, but no US succeeds the compound. According
to the Rescorla-Wagner equation (2.9, this would decrease the associative strength of
both stimuli. However, this is incorrect as noted in [Pearce & Bouton 2001]. Therefore,
configural theories postulate that the compound creates a new unique element, entering
into an association with the US on its own. The ”configuration” thus acquires negative
associative strength, and does not interfere with any of the compound elements when
they are presented by themselves. Similarly, a pair of Perceptrons can solve the XOR
problem:

x1, x2, . . . , xn ∈ {0, 1}, w1, w2, . . . , wn ∈ {1}

f1(x1, x2, . . . , xn) =
n∑

i=1

xiwi − θ − f2, θ = 0.5

f2(x1, x2, . . . , xn) =
n∑

i=1

xiwi − θ, θ =
( n∑

i=1

wi

)− 0.5

The output of a Perceptron can be seen as the strength of the conditioned response.
When the compound is presented, it is cancelled by f2, which serves as a NAND
function of the compound elements.

2.5 Inconsistencies between RL and AL
The preceding paragraphs show evidence of a theoretical and practical gap between
Reinforcement learning and associative theories of animal learning. The following
paragraphs serves to recapitulate the inconsistencies as described above.

2.5.1 States and generalization
It dares to be repeated that Reinforcement learning places no particular emphasis on
the analysis of what is included in the state signal, i.e. the representation of states. The
definition of Q-learning leaves representational issues to the application designer. In
associative learning theories utilizing the elemental approach, the state is a compound
of stimuli, each attaining or losing associative strength over trials. In contrast to re-
inforcement learning, where the state as a whole, (i.e. the compound is considered
as a configuration), enters into an association with the succeeding state, associative
learning divides the state signal into stimuli, each entering into an association with the
succeeding stimuli (there can be more than one). There will thus be transfer of associa-
tive strength between different states, to the degree which they share stimuli, thereby
creating a savings effect.
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2.5.2 Nature of reinforcers
In reinforcement learning reinforcers/inhibitors are not considered to be part of the
environment [Sutton & Barto 1998]. Rather they are presented to the agent in order to
guide its behavior, that is, as rewards or punishments2. In that sense they are separated
from the resulting state s′ after performing an action in state s. The performed action in
state s is reinforced or suppressed upon reaching the resulting state s′. In Psychological
terms an association between the state s and the action a is formed, whereas the desired
state s′ acts as a reinforcer or inhibitor. There is no direct equivalent to the concept
of return (from RL) in Psychology; a return is just another form of stimulus having
the quality of a return [Alonso & Mondragón 2004]. Hence Psychology makes no
distinction between returns and Outcomes, whereas in Reinforcement Learning these
are separate entities [Sutton & Barto 1998].

2.5.3 Types of learning
According to [Alonso & Mondragón 2005] the inconsistency between RL and AL lies
in the types of associations that their respective models describe, as well as the abstrac-
tion of returns from the environment. As is shown in experiments from instrumental
conditioning, animals form ”S→R”-, ”S→O”-, and ”R→0”-associations. Additionally,
according to classical conditioning, animals also form ”S→S”-associations without re-
gards to any instrumental action. As a result of the definition of Markov Decision
Processes, and the way in which an optimal policy is defined, a RL agent merely forms
”S→R”-associations, which, as is hypothesized by [Alonso & Mondragón 2005], re-
stricts the effectiveness of learning.

2.6 Former integrations of Reinforcement Learning and
Associative Learning

As described earlier, reinforcement learning is based on theories from associative learn-
ing, so there is no reason why this synthesis of computer science and psychology should
not be taken further. [Sutton & Barto 1990] define their temporal difference model on
the basis of Pavlovian conditioning, and in fact it is a time-derivative model of the
Rescorla-Wagner model [Rescorla & Wagner 1972]. Later, little has been done to ex-
tend the framework upon which reinforcement learning is dependent on, MDPs, but
some theories from associative learning has been applied in robotics. For example
[Touretzky, Daw & Tira-Thompson 2002] take into consideration problems of inter
stimulus intervals during learning. Also, [Saksida, Raymond & Touretzky 1997] have
used principles from instrumental learning to shape robot behavior. Thirdly, neuro-
science often use associative models of learning to confirm their brain-level learning
models. It is believed that if a neuronal model can exhibit the same learning phenomena
as associative models, it has some objective basis of support. [Dayan & Abbot 2001]

2This implies an external teacher to define the amount of reinforcement given upon entering a state, not
an easy task in itself, because it effectively means that the external teacher needs to have enough knowledge
about the structure of the environment to be able to guide the behavior in the most effective way.
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provides an extensive account of computational neuroscience. The synthesis of rein-
forcement learning and associative learning, which is aimed at in this project, is not
trying to bridge analytical gaps in the theory of associative learning. The intention is
to use animal learning models to overcome problems in reinforcement learning. This
view has been proposed by [Alonso & Mondragón 2005].
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Chapter 3

Methods

3.1 Methodology
In what can be described as a search for psychological models of learning that can
be exploited in order to decrease the theoretical gap between Reinforcement Learning
and Associative Learning, requirements have been gathered in light of the objectives
of this project. The model for association formation in Reinforcement Learning is
based exclusively on early theories of instrumental conditioning, namely Thorndike’s
”Law of effect” [Thorndike 1911]1. It is evident that Psychology has made a lot of
progress since these early theories appeared. Hence there is plenty of theory to draw
from in order to extend the Reinforcement Learning model with novel theories from
Associative Learning. In this chapter the work process that have been carried out in
order to gather requirements and design a new learning algorithm will be described, as
well as the experiment design carried out to test the merits of the new model relative to
the Q-learner agent. The following list briefly summarizes the work process:

• Requirements gathering: Meetings with associative learning expert and super-
visor. Reading literature on conditioning in order to understand psychological
models of learning. Gathering requirements for a new (extended) computational
model of learning.

• Analysis of requirements: Understanding how associative theories of learning
can improve reinforcement learning (specifically Q-learning).

• Design of algorithm and model according to requirements analysis. Planning of
integration of model with Grid world testing environment.

• Implementation of new learning model, Q-learner, and Grid world testing envi-
ronment in Java.

• Planning of testing and experiments; procedures to verify the model.

1The ”Law of effect” states that an association between a response and a preceding stimulus will be
strengthened or weakened if succeeded by an excitatory or aversive outcome respectively.
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3.1.1 Requirements of model
The requirements of the new learning model are loosely given by the objectives of this
project. Therefore, when approaching the problem, the objectives have served as a
guideline of where to apply associative theories of learning. Following this line the
objectives are again presented here, and discussed briefly. The following objectives
constitute the high-level requirements of the new algorithm. In the next section the
requirements will be analyzed in order to derive a realistic model.

Incorporating psychological bias: To incorporate psychological bias in the archi-
tecture of the agent that will guide its learning process. This is a rather vague objective,
which can imply many things. However, in this case it means that internal drives will
be introduced, that will make the agent approach appetitive stimuli and avoid aversive
stimuli. Additionally, exploration will be introduced as a specific type of drive. This
is an idea of abandoning the ”tabula rasa” approach of learning which is employed in
reinforcement learning. In short, this means that the agent will have some form of rep-
resentation of stimuli that are aversive or appetitive from the very instantiation of the
agent.

New types of associations: To endow the agent with the ability to form other types
of associations other than S→R associations. Associative theory envisages three types
of association:

• Stimulus-Response (S→R) associations.

• Stimulus-Outcome (S→O) associations.

• Response-Outcome (R→O) associations.

This objective is closely tied with the previous in that the expectance of a particular
outcome can be explicitly anticipated when the actual outcome is part of the associa-
tion. The internal drives introduced in the previous paragraph thus serve as a means to
reevaluate canonical outcomes, i.e. ”naturally” aversive/appetitive stimuli.

Event representation: To take into account associative theory’s conception of event
representation. An event is anything entering into an association with something else;
a stimulus, a response, or an outcome. The question is then how to represent stimuli
and responses.

Redefine outcomes: To redefine outcomes as comprising sensorial and motivational
elements. As have been discussed in the literature review, there are two approaches to
stimuli representation; one being elemental and the other being configural. Reinforce-
ment learning (and Q-learning) uses a configural representation of outcomes by default,
the states being considered irreducible entities. Associative learning, on the other hand,
favors an elemental representation. This means that outcomes will consist of several
stimuli, each of which can be either sensorial (neutral) or motivational (instinctively
aversive/appetitive).
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Amend the conditions of association formation: To take into account the funda-
mental conditions of association formation proposed by associative theory. Under the
elemental approach of association learning there are other rules governing the acqui-
sition of associative strength (Rescorla-Wagner update rule), and the change in as-
sociability of stimuli over time. These have been described in the literature review.
More specifically, the Rescorla-Wagner error correction rule (equation 2.9), will be
incorporated in the model, and also the change in associability as a derivative of the
surprisingness of the outcome (see equation 2.10).

Requirements of testing environment

In addition to the requirements of the learning model, a number of requirements have
been set for the learning simulator, i.e. the testing environment; the Grid world. The
Grid world is a n x n board of squares (also known as spatial locations). At any moment
the agent is situated in one of the squares. To move from square to square, the agent has
a repertoire of 8 possible intrinsic responses, namely the movements going out from
the current spatial location: East, South East, South, South West, West, North West,
North, and North East. A response leading out of the Grid world, i.e. at one of the
edges, will result in no movement. The Grid world is episodic, meaning that there is
a start location and a goal location. Upon reaching the goal location, the agent will be
moved back to the start location automatically.

Usually, in a Grid World environment, the x,y-coordinates are used as the state
description. That is, if the agent is at spatial location (3,2), then the x,y-values will be
used as the state description. This ensures that the Markov property holds, but does
not say anything more about the actual state than its actual location. In associative
learning, the state consists of stimuli, each of which can be anything perceivable by
the agent, and the spatial location itself is not taken into account explicitly. There is
therefore a need to define stimuli in spatial locations, implying an interface to the Grid
World making this possible. This also means that the agent will perceive the stimuli
compound present in the current spatial location, instead of the x,y-coordinates.

3.1.2 Analysis and implications of requirements
The high-level requirements presented in the previous section provide a guideline for
the analysis in this section. A dissection of the requirements is therefore given below,
which will describe the thought-process behind the actual design of the learning model.
Questions that were posed include:

• What do the requirements mean?

• What do they imply?

• How do they translate into a realistic and doable design?

The most important question, however, is how the requirements can improve Q-learning.
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Incorporating psychological bias

The psychological bias aimed at being introduced concerns the definition of drives,
motivational state, exploration, and how appetitive or aversive a stimulus is. In the
following list, these concepts are analyzed.

• Drives (Unconditional stimuli): A drive is something that causes behavior in the
agent, and that is built in to the agent. In the simple definition of the Grid world,
the only behavior known to the agent is movement. This is no different from
the definition of a Reinforcement Learning agent; it also has built in actions/re-
sponses. It does not have drives, however. A Reinforcement Learning only seeks
to maximize a reward signal, and consequently it does not really know what it
wants. The reward signal is an abstraction of the outcome defined by the environ-
ment. On the other hand, a drive is something specific. It represents something
that the agent wants or does not want; a goal or a danger. Because of the trivial set
of responses available to the agent in the Grid World, the only behavior that these
drives can provoke is approach or avoidance. The agent will approach appetitive
stimuli and avoid aversive ones. A drive is thus an unconditional stimulus.

• Motivational state: Even though the agent knows intrinsically that certain stimuli
are appetitive or aversive, it is not certain that this will cause behavior, because
some need might recently have been satisfied. Without getting too speculative, a
comparison to an animal might be appropriate. After an animal has eaten enough
to be full, it will have no need to eat more until it gets hungry again. Similarly
an agent which knows that certain stimuli are appetitive (i.e. cause approach),
might have collected enough of these stimuli to satisfy its current need, and con-
sequently will not be motivated to approach these stimuli until it has consumed
those previously collected. However, this mechanism is beyond the scope of this
project. For the simple model presented in this thesis, the motivational state is
constant. The agent will always be motivated to approach appetitive stimuli and
avoid aversive ones.

• Exploration: Closely intertwined with motivational state is exploration. In rein-
forcement learning, exploration is needed in order to improve the current policy,
or in other words to collect the most rewards with the least amount of effort. In
associative learning, the concept of behavior optimization is not explicitly an-
alyzed. This is in fact why reinforcement learning was conceived. [Sutton &
Barto 1990] provide a real-time model of associative learning, where the goal is
to maximize associative strength. Associative strength is viewed as an expecta-
tion of reward. In the Grid World the distribution of associative strength over
stimuli will always be greatest over the shortest path. Therefore the agent should
prefer behavior which minimizes aversive outcomes and which lead to appetitive
behavior with the least amount of movement. Exploration can be defined in two
ways, (not exclusively), for an associative learner. E.g.:

– A possibility is to use an explorative policy from reinforcement learning
like e.g. ε-greedy
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– Alternatively, the agent’s drive to explore can be modulated by the increase
and decrease in the quantity of appetitive outcomes, as well as the increase
in aversive outcomes. If the agent encounters many aversive outcomes, it
should try to change its situation by adjusting its behavior; exploring new
responses. On the same theme, if the agent is already doing quite well by
approaching many appetitive outcomes, there is always the possibility that
a change in behavior might lead to a better situation. Therefore the agent
should always maintain some exploration to keep an ”open mind” towards
better policies.

• An implication of the maximization of appetitive outcomes, is that the avoidance
of appetitive stimuli is considered aversive. Conversely the avoidance of aversive
stimuli is considered appetitive.

New types of associations

• S→R associations, as in RL, fails to anticipate the actual outcome. These associ-
ations merely anticipate a reward. If the outcome loses its value, there is noting
to tell the agent explicitly of this. In RL, the derived reward value has to change.
Thus the responsibility is placed on the environment to reevaluate the outcome.

• S→O and R→O associations predict the actual outcome, and due to the agent’s
internal drives and motivational state, the agent itself is able to place a value on
the outcome. There is a shift in responsibility. The agent has to reason about out-
comes, i.e. derive the value of outcomes instead of being provided with rewards.

Event representation

In reinforcement learning the event representation, whether that is a state or a response,
is some symbolic value facilitating function or table lookup. For instance with Q-values
the state and response are used as indices for function or table lookup in order to store
or retrieve the Q-value. When changing the event representation one needs to consider
what the changes imply for the design of the model. The response representation re-
mains unchanged for the Grid world environment; it is a numerical value denoting one
of the possible movements. State representation on the other hand, will be completely
redefined. The reinforcement learning agent will still depend on a unit representation
of each state, whereas the associative learning agent will be given a list of stimuli upon
entering a spatial location. After consulting literature from associative learning, it has
been found that a stimulus can be represented as some modality having a strength prop-
erty. A modality is a symbolic value, and the strength property of the stimulus denotes
the salience of the stimulus, e.g. modality 4 with strength 9. A stimuli compound found
in a spatial location is then a list of modalities with corresponding strengths. For the
associative learning agent, each element in the list is considered as an event, whereas
for the reinforcement learning agent, the whole list is considered as one event. The
modality of a stimulus in this thesis is merely a numerical abstraction; it can represent
anything. Contrarily, the strength property of the stimulus is important for generaliza-
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tion and transfer of associative strength between similar stimuli, where two stimuli are
considered similar if they are of the same modality and have near equal strength.

Redefine outcomes

Outcomes are redefined as consisting of both motivational and sensorial stimuli. In re-
inforcement learning, rewards define the value of an outcome. Conversely, in associa-
tive learning, the agent itself will define the value of an outcome. As described above,
this value will be derived on the basis of internal drives. Stimuli encountered will
therefore be compared with the internal drives, and the similarity will be used as the
basis of value. Some stimuli will match the drives, whereas others will be neutral. The
stimuli that match the the internal drives will be the basis of first-order conditioning.
Hence they serve as unconditioned stimuli that otherwise neutral stimuli can become
associated with. A neutral stimulus that has become associated with an unconditioned
stimulus is said to have gained predictive value. It now predicts the aversive/appetitive
outcome. From this basis it can now become the subject of second-order conditioning,
i.e. its predictive value can propagate to preceding stimuli.

Amend the conditions of association formation

As have been accounted for in the description of temporal difference learning, Q-
learning is a predictor of future reward, i.e. state-action values accumulate future re-
ward following a specific policy from the current state and onwards. This prediction is
estimated by the Q-value update equation:

Q(s, a) ← Q(s, a) + α
[
r′ + γ max

a′
Q(s′, a′)−Q(s, a)

]
(3.1)

In equation 3.1 the term
[
r′ + γ maxa′ Q(s′, a′) − Q(s, a)

]
represents the temporal

difference error between the current state-value estimate (Q(s, a)) and the new state-
value estimate (r′ + γ maxa′ Q(s, a)). When comparing the Q-value update equation
to the Rescorla-Wagner equation for error correction of associative strength, several
differences, but also some similarities can be noted. The Rescorla-Wagner equation is
repeated for reasons of comparison with Q-learning [Rescorla & Wagner 1972]:

V ∆CS ← αβ
[
λUS −

n∑

i=0

VCSi

]
(3.2)
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Differences

Associative learning
(Rescorla-Wagner model)

Reinforcement learning (Q-
learning)

How learning
rate is deter-
mined

Learning rate is dependent on
the salience (i.e. modality
strength) of the conditioned
stimulus (α) as well as on the
salience of the unconditioned
stimulus (β). Consequently,
the learning rates are dynamic
and dependent on the situation
(i.e. the salience of the stim-
uli).

The learning rate α is not de-
pendent on the situation, and
is often held constant over the
whole learning period.

Changes in
learning rate

In addition to being initially
determined by the salience of
the stimuli, the learning rate
of the conditioned stimulus
varies according to the abso-
lute discrepancy of the US
asymptote and the sum of as-
sociative strength of all con-
ditioned stimuli present (see
equation 2.10).

There is no change in learn-
ing rate according to the sur-
prisingness of an outcome (re-
ward).

Association for-
mation

The Rescorla-Wagner model
derives the change in asso-
ciative strength of one of the
conditioned stimuli, on the
basis of the discrepancy be-
tween the US asymptote λ
and the sum of associative
strength of all conditioned
stimuli present. Stimuli are
thus competing for the asso-
ciative strength available (as
determined by the asymptote
λ). Consequently two differ-
ent situations can share stim-
uli and thus get a savings ef-
fect by transfer of associative
strength to the new, but simi-
lar situations.

Q-learning considers states as
irreducible entities, and up-
dates the reward prediction
based merely on two states (or
stimuli compounds); the cur-
rent one and the next. There
is no transfer of reward pre-
diction from one state to the
other, even though they might
be similar and share elements.
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Associative learning
(Rescorla-Wagner model)

Reinforcement learning (Q-
learning)

Second-order
conditioning

The Rescorla-Wagner model
does not account for second-
order conditioning explicitly,
although as described later,
there is nothing to suggest
that a neutral stimulus can-
not take on asymptotic value
and thus gain US qualities.
This can happen when a pre-
viously neutral stimulus be-
comes a strong predictor of an
US. The associative strength
of the CS can then be inter-
preted as the asymptote λ. By
this account, any stimuli can
become a US.

One of the things Q-learning
explains well is second-order
conditioning. In the beginning
of a learning period, every
state is neutral. As the agent
explores the environment it
will eventually encounter a
highly rewarding state. The
reward value from this state
will thereafter be propagated
backwards in time to pre-
viously neutral states which
now become predictors of re-
ward. The definition of the
Q-value update (equation 3.1
with bootstrapping shows that
second-order conditioning is
the basis of temporal differ-
ence learning.

Instrumental
learning

Classical conditioning, which
the Rescorla-Wagner model
caters for, does not consider
operant behavior, that is,
the discriminatory response
needed in order to reach
an outcome. However, the
Rescorla-Wagner equation
can be used to encode other
types of associations as
well, including R→O- and
S→(R→O)-associations.
This is done by considering
the respective elements,
responses, stimuli, and out-
comes, more generally as
events [Mackintosh 1983].

Obviously, Q-values are de-
fined by state-action pairs,
and hence Q-learning encodes
S→R associations (i.e. instru-
mental learning).
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Associative learning
(Rescorla-Wagner model)

Reinforcement learning (Q-
learning)

Outcome cate-
gories

Classical conditioning and the
Rescorla-Wagner model do
not differ in whether out-
comes are aversive or appeti-
tive. Both categories of out-
comes may enter into asso-
ciations with neutral stimuli.
A stimulus can equally well
be a predictor of an aversive
outcome as an appetitive out-
come. It shall be noted, how-
ever, that in the case of the
Grid World, associations with
appetitive outcomes will prob-
ably tend to be stronger due
to the fact that aversive out-
comes will be avoided, leav-
ing less chance to grow as-
sociative strength with aver-
sive outcomes. The Rescorla-
Wagner model can thus be
seen as a predictive model
of the world; it merely pre-
dicts outcomes and does not
say anything about the reward
value of an outcome. This
value is separated from the
model, and is more related to
instrumental learning; in or-
der to learn correct behavior,
the agent has to value the out-
comes in terms of reward.

In reinforcement learning, the
appetitiveness or aversiveness
of an outcome is determined
by the amount of reward it
predicts. Q-learning is noth-
ing more than a model of the
correct behavior, and does not
describe the relationships be-
tween states in the environ-
ment. S→R-associations de-
scribe habits; that is, simple
reflexive actions determined
by the amount of reward pre-
dicted by state-action pairs.

Policy evaluation Associative learning is
on-policy; the agent
learns to associate events
from its actual behavior.

Q-learning is off-policy;
it always estimates the op-
timal policy, but behaves
sub-optimally in order to
explore new states.

Similarities

• Both the Q-value update rule and the Rescorla-Wagner equation base their esti-
mation of future reward/associative value on a discrepancy between the current
value and the ”correct” value (the asymptote).

• The asymptotic value λ used in the Rescorla-Wagner model can be interpreted
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as future reward.

• Both models learn more when value discrepancies are large, i.e. they both learn
more from surprising events than from less surprising events. This is due to the
error correction term used by both models.

3.1.3 Design of model
This section carries on from the analysis section to provide a technical account of the
design of the learning algorithm, and the Grid World learning simulator. This detailed
account is then used to implement the model.

As described earlier, in RL the state signal is an irreducible entity. For this reason
the agent cannot extract or infer which parts of the state are actually important. On the
same theme as the reward-environment abstraction problem (see section 2.5), this has
some unfortunate consequences for RL:

• The ability to reason over elements present in the current state signal is non-
existent

• Some elements present in the state signal will often be more important than other
elements

• The reward-environment abstraction problem is a direct consequence of consid-
ering states as irreducible entities

States vs. Stimuli compounds

It is proposed that a state S is redefined as consisting of a set of stimuli Sc. Several
stimuli can be present at any time in any spatial location. This is known as a stimuli
compound, (also known as the state signal in RL). Consequently, the Markov property
(2.8) will be relaxed from the point of view of the agent. Because different stimuli, all
present in the same spatial location, can be of different importance to the agent, it is
the responsibility of the agent to encode its own state signal by extracting the important
elements from the stimuli compound. Moreover, as can be deduced from this argument,
the associative model of the environment will be more compact and general because
elements can be shared across spatial locations. The stimuli compound is defined as a
vector of elements, where each element of the stimuli vector represents some modality,
along with a value property denoting its strength:

Sc = 〈s1, s2, . . . , sn〉
sn.modality = {0, 1, . . . , m}

sn.value = [0,max strength]

Rewards vs. outcome values

In reinforcement learning the agent receives a reward upon entering a new state. Hence
it does not know why the new state is good or bad; it only knows the immediate value of
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entering that state. The only information available to an agent about a state in reinforce-
ment learning is the amount of reward it predicts. Therefore the agent is completely
dependent on the environment to provide the correct reward values in order to guide
its behavior. The agent has no way of reasoning about the states in terms of its in-
ternal needs, because it has no internal needs other than reward maximization. As a
consequence, the agent doesn’t really understand the problem it is trying to solve; it
only understands reward maximization. To remedy the reward-environment abstrac-
tion problem, where rewards are abstractions of the value of outcomes, the proposal is
to redefine the value of an outcome as a function of the agent’s aversion or excitation
towards that outcome. In other words the agent provides a mapping between a stim-
ulus and its value, depending on the agent’s motivational state (AMS) at time t. This
proposal contradicts Reinforcement Learning, where the value of an outcome is pro-
vided explicitly and separated from the actual outcome in the form of a reward. More
formally:

λUSt
= f(amst−1, USt−1) (3.3)

The definition of equation 3.3 is a matter of further analysis. However, it is clear that
the agent must have some representation of what it wants, rather than the designer
having to define λ explicitly. If λ was to be defined explicitly it would defeat the
purpose of redefining rewards as stimuli with motivational value. In order to understand
how the Stimulus Value function should be defined, its desired properties must first be
established. First, it should manifest some canonical instinctive aversion or excitation
towards certain stimuli. Secondly, by way of becoming associated with such stimuli,
otherwise neutral stimuli must be able to take on the same properties. This is paramount
if rewards are to be anticipated. It is therefore suggested that the motivational value of
stimuli is determined by the agent’s internal drive. A drive is a primary instinct in
the agent, one that it possesses ”naturally”, that is, from instantiation. Because stimuli
compounds have already been defined as vectors, it is logical to define drives as vectors
as well. This means that a drive is essentially the agent’s internal representation of
a stimulus. By this suggestion it will be straightforward to compare a drive with a
stimulus. The question then remains how an otherwise neutral stimulus, one that the
agent has no natural excitation or aversion towards, will take on properties that will
evoke a representation of a drive. A neutral stimulus is by definition similar to a non-
neutral stimulus in that they both are made up of the same elements; modality and
modality-strength. One possible solution would be to add the neutral stimulus to the
set of drive vectors present in the agent, but this would be too memory consuming.
Instead, two possible solutions are proposed:

1. A trace of the previously perceived stimuli compound. Any associative strength
gained by the current stimuli compound with its successor, will be transferred to
the previous stimuli compound along the behavioral path of the agent.

2. A lookahead function. Upon encounter of a neutral outcome A, the lookahead
function will find the maximum associative value of A. This value will then be
transferred to the stimuli preceding A.
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The role of the similarity function and internal drives

In order to generalize between stimuli, and to compare stimuli with internal drives, a
similarity function is needed. This function should return a value between 0 and 1,
when comparing two stimuli, where 0 is no similarity and 1 denotes equality. The
Gaussian function has been found to be a good match for the purpose. Let the modality
strength of stimulus A represent the mean µ of a normal distribution ND with standard
deviation σ, and let xB and xA represent the strength of stimulus B and A respectively.
The probability of stimulus A P (xA) occurring in ND is given by:

P (xA) =
1

σ
√

2π
e
−(xA−µ)2

2σ2 (3.4)

Now, it is possible to calculate the probability P (xB) that a second stimulus B occurs
in the same normal distribution:

P (xB) =
1

σ
√

2π
e
−(xB−µ)2

2σ2 (3.5)

This leads to the definition of the similarity function:

sim(A,B) =
P (xB)
P (xA)

I(A,B) (3.6)

I(A,B) =
{

1 if A.modality = B.modality
0 if A.modality 6= B.modality

Thus the similarity function is bell-shaped, continuous, and insensitive to the sign of
the difference between the value of two stimuli. This can most readily be seen from
the plot in figure 3.1.3. The sensitivity of the similarity function is controlled by the
standard deviation σ, where if sigma is small the similarity function will allow for
only small differences in modality strength, and contrarily it will be less specific for
larger values of σ.

Moreover, for the purpose of deriving outcome values, the internal drives (ID) of an
agent is a vector of stimuli, along with a category-indicator for each element denoting
whether the stimulus is aversive or appetitive:

ID = 〈s1, s2, . . . , sn〉
sn.modality = {0, 1, . . . , m}

sn.value = [0,max strength]
sn.category = {aversive, appetitive}

aversive = −1
appetitive = 1

Accordingly, the function for deriving the asymptotic value of an outcome (for first-
order conditioning) can now be defined. As accounted for in the previous section, the
motivational state of an agent is constant; i.e. it will always have a need to approach
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Figure 3.1: The similarity function with a mean µ of stimulus strength 5
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appetitive outcomes2. For first-order conditioning the asymptotic value of an outcome
(US) is thus set in the following way:

λUS = max(∀s ∈ ID : sim(s, US)) (3.7)

The value of an outcome is the maximum similarity when comparing to all internal
drives. For the new learning model, the asymptote λ thus takes the place of reward.

A causal model of the environment

It is now appropriate to introduce the way in which the causal associative model of
the environment will form. As have been shown earlier the Rescorla-Wagner learning
equation accounts for associations between Stimuli, that is, S→S-associations. By this
account it is possible for the agent to derive a causal model of the environment, i.e. an
event map of the environment dynamics. For example; stimulus A signals an Uncon-
ditioned Stimulus B. This kind of model is strictly a causal event map of the environ-
ment; it does not say anything about reward maximization, which will be discussed in
the next section. It is proposed that the agent forms an associative memory of S→S-
connections, merely signalling events without regard of whether they are aversive or
appetitive. The question is then; why does the agent need an associative memory which

2However, the motivational state of the agent might be modulated in order to weight the value of outcomes
differently. This is beyond the scope of this project.
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does not account for reward maximization? In reinforcement learning, the associative
strength of S→R-associations represent reward predictions. However, they do not say
anything about the availability of outcomes. A causal model of the environment, in the
form of S→S-associations, will inform the agent of the available outcomes in any situa-
tions, as well as their salience. This means that the causal model will predict important
outcomes. The most important outcomes will attract the most associative strength. As
stated above the causal model does not take into account reward maximization, that
is, the sign value of an outcome (i.e. aversive/appetitive). Therefore associations in
the causal model, S→S, make use of equation 3.7, when adjusting associative strength.
Equation 3.7 can thus be plugged into the Rescorla-Wagner error correcting rule:

V ∆CS = αβ
[
max(∀s ∈ ID : sim(s, US))−

n∑

i=0

VCSi

]
(3.8)

The predictive strength of a stimulus (denoted VCS in equation 3.8), will be stored
as a (Stimulus,Stimulus)-pair (i.e. (CS,US)). These pairs form the Associative Mem-
ory (AM) of the agent. As will be shown later, the AM memory plays a role in the
functional aspects of the learning model.

Reward maximization

As hinted to earlier the sole goal of Associative learning is not to build learning models
that are able to solve the Reinforcement Learning problem, that is, to maximize returns
in the long run. However, models of associative learning can be interpreted in a way
that makes them suitable to solve this problem, and indeed it seems like animals are
exhibiting some form of reward maximization over time. It is described in [Alonso
& Mondragón 2005, Mackintosh 1983] that animals have, naturally, internal drives
(see above). These drives cause reflexes upon perception of unconditional stimuli, as
described by [Pavlov 1927]. The reflexes undoubtedly play a role in survival, e.g. in
the search for food and avoidance of danger. Consequently the drives can be seen as a
substitute for reward maximization in Reinforcement Learning. In order for the agent to
approach appetitive Unconditioned Stimuli with the least amount of effort, it therefore
needs some form of expectance towards outcome values, including outcome value sign
(aversive/appetitive). In this way the agent can predict, not only the outcome, but also
whether the outcome is aversive or appetitive. Reward maximization is manifested in
behavior, and is derived from instrumental associations, i.e. involving responses. In
reinforcement learning, the reward expectance is encoded in S→R-associations, or in
other words habits. It is clear that this form of association does not allow the agent to
anticipate the actual outcome. Consequently, with S→R-associations, the agent cannot
reevaluate outcomes; e.g. if the outcome loses its value. An RL agent is dependent on
rewards from the environment in order to reevaluate outcomes. For the new learning
model it is therefore suggested to include the outcome in the instrumental associations,
i.e. S→(R→O). This leads to two new properties. Firstly, the agent now has to value
outcomes itself, and secondly it can now predict actual outcomes in addition to their
reward value. Equation 3.8 is amended to include the sign of unconditioned stimuli, in
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order to encode reward value in instrumental associations:

V ∆CS,R = αβ
[
max(∀s ∈ ID : sim(s, US))× s.category −

n∑

i=0

VCSi

]
(3.9)

The instrumental associations of the learning model thus constitute an Expectance
Memory (EM), encoded in S→(R→O)-associations. These associations are very spe-
cific, because they predict the amount of reward from a particular outcome, given a
specific Response R and Stimulus CS. The EM memory is similar to state-action val-
ues in Reinforcement Learning, two important differences being that the outcome is in-
cluded in the association (thereby forming state→action→state values), and the ability
to reevaluate outcomes based on the internal drive vector (ID). The term sim(s, US)×
s.category in equation 3.9 takes into account whether the stimulus s from the in-
ternal drives is appetitive or aversive, by multiplying the similarity function with the
s.category, which takes a value of -1 for aversive stimuli and 1 for appetitive stimuli.

Second-order conditioning

So far it has been shown how first-order conditioning takes place, in the description
of the associative memory and the expectance memory. However, it is paramount that
second-order conditioning is catered for in the update equations of both of these mem-
ories. Second-order conditioning is basically propagation of associative strength to
otherwise neutral stimuli, and is something that Q-learning does well. The two previ-
ous sections accounts for first-order associations with Unconditioned Stimuli. In order
to implement second-order conditioning both equation 3.8 and 3.9 need to be amended.
As described earlier, two methods have been suggested for propagation of associative
strength; trace and lookahead. The trace method propagates associative strength of
the current stimuli to the previously visited stimuli compound, and is therefore on-
policy. On the other hand, the lookahead method propagates the maximum associative
strength of the succeeding stimuli compound to the current stimuli compound, and
is hence off-policy like Q-learning. Algorithm 4 and 5 describe the implementation
of second-order conditioning for the trace method, with regards to the causal model
and the reward maximization model respectively. In algorithms 6 and 7 the lookahead
method is described for the causal model and the reward maximization model respec-
tively. Both methods employ a decay parameter δ, which serves the same purpose as
the discount rate parameter γ in Q-learning.

As can be seen from the pseudo code in algorithm 4, in lines 9 to 18, the associative
strength of the current stimuli compound Sc towards each stimuli in the next stimuli
compound NSc is accumulated in the variable AGS. A record is then kept of the max-
imum value of AGS in the variable MAS, which is then used to update the associative
strength of the previous stimuli compound, in lines 19 to 25. The exact same procedure
is repeated in algorithm 5, except that outcome category is utilized to take into account
the sign of the outcome value.

The lookahead method, presented in algorithms 6 and 7, provides a more compact
implementation of second-order conditioning. Like Q-learning, it updates associative
strength on the basis of a maximum prediction. On line 8 of algorithm 6, where λ is
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Algorithm 4 Trace method for the causal model
1: Initialize:
2: PSc ← Previous stimuli compound
3: Sc ← Current stimuli compound
4: NSc ← Next stimuli compound
5: AGS (Aggregate Associative Strength) ← 0
6: MAS (Max Associative Strength) ← −∞
7: λ ← 0
8: ST (Similarity Threshold) ← 0.85
9: δ ← 0.9

10: For each ns in NSc
11: AGS ← ∑

s∈Sc Vs→ns

12: If AGS > MAS then MAS ← AGS
13: λ ← max(∀id ∈ ID : sim(id, s))
14: If λ ≥ ST then
15: For each s in Sc
16: Vs→ns ← Vs→ns + αβ

[
λ−AGS

]
17: Next
18: End if
19: Next

20: For each s in Sc
21: AGS ← ∑

ps∈PSc Vps→s

22: For each ps in PSc
23: Vps→s ← Vps→s + αβ

[
δMAS −AGS

]
24: Next
25: Next
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Algorithm 5 Trace method for reward maximization
1: Initialize:
2: PSc ← Previous stimuli compound
3: Sc ← Current stimuli compound
4: NSc ← Next stimuli compound
5: R ← Response elicited to get from Sc to NSc
6: pR ← Response elicited to get from PSc to Sc
7: AGS (Aggregate Associative Strength) ← 0
8: MAS (Max Associative Strength) ← −∞
9: λ ← 0

10: ST (Similarity Threshold) ← 0.85
11: δ ← 0.9

12: For each ns in NSc
13: AGS ← ∑

s∈Sc Vs→(R→ns)

14: If AGS > MAS then MAS ← AGS
15: λ ← max(∀id ∈ ID : sim(id, s))× id.category
16: If λ ≥ ST then
17: For each s in Sc
18: Vs→(R→ns) ← Vs→(R→ns) + αβ

[
λ−AGS

]
19: Next
20: End if
21: Next

22: For each s in Sc
23: AGS ← ∑

ps∈PSc Vps→(pR→s)

24: For each ps in PSc
25: Vps→(pR→s) ← Vps→(pR→s) + αβ

[
δMAS −AGS

]
26: Next
27: Next
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Algorithm 6 Lookahead method for causal model
1: Initialize:
2: Sc ← Current stimuli compound
3: NSc ← Next stimuli compound
4: AGS (Aggregate Associative Strength) ← 0
5: λ ← 0
6: δ ← 0.9 (Decay parameter)

7: For each ns in NSc
8: AGS ← ∑

s∈Sc Vs→ns

9: λ ← max(∀id ∈ ID : sim(id, s)) + δ max(∀o ∈ O :
∑

ns∈NSc Vns→o)
10: For each s in Sc
11: Vs→ns ← Vs→ns + αβ

[
λ−AGS

]
12: Next
13: Next

calculated, an extra term, (δ max(∀o ∈ O :
∑

ns∈NSc Vns→o)), is added to the first-
order conditioning definition. This term finds the maximum associative strength of the
NSc compound over all outcomes predicted by NSc. Algorithm 7 is identical with 6,
except that the sign of the outcome value is taken into account.

Modelling of responses and exploration

In its most trivial form the Grid-World merely allows for a simple set of actions, namely
the set of directions relative to the current position of the agent, i.e. (North, North East,
East, South East, South, South West, West, North West). Hence, there is no direct
way of modulating the strength of a response; the agent either moves in one of these
directions or not. However, it is possible to vary the response frequency given a certain
stimulus. This can be done according to the expectance value of the signalling cue, i.e.
the likelihood of receiving an appetitive outcome by performing a specific action. The
associative strength of the signalling cue is then used as the policy setter. In order to
understand the functional aspects of the learning model, a formal account is needed on
how the associative memory and the expectance memory are utilized in order to derive
the best response. The function definition in 3.10 summarizes the procedure for finding
the best response in a given situation (cR is an abbreviation for choose Response, and
the Sc parameter of the cR function is the currently perceived stimuli compound).

cR(Sc) ← (∀r ∈ R, ∀o ∈ (Sc → O) : max
r

( ∑

s∈Sc

Vs→(r→o)

)
) (3.10)

Statement 3.10 uses the expectance memory in order to select actions, and hence does
not take into account the causal model of the world. Alternatively, the associative
memory and the expectance memory can be combined together in order to weight the
reward predicted by the expectance memory.

cR(Sc) ← (∀r ∈ R, ∀o ∈ (Sc → O) : max
r

( ∑

s∈Sc

Vs→(r→o) ∗ Vs→o

)
) (3.11)
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Algorithm 7 Lookahead method for reward maximization
1: Initialize:
2: Sc ← Current stimuli compound
3: NSc ← Next stimuli compound
4: R ← Response elicited to get from Sc to NSc
5: pR ← Response elicited to get from PSc to Sc
6: AGS (Aggregate Associative Strength) ← 0
7: λ ← 0
8: δ ← 0.9 (Decay parameter)

9: For each ns in NSc
10: AGS ← ∑

s∈Sc Vs→(R→ns)

11: λ ← max(∀id ∈ ID : sim(id, s)) × id.category + δ max(∀o ∈ O :∑
ns∈NSc Vns→(R→o))

12: For each s in Sc
13: Vs→(R→ns) ← Vs→(R→ns) + αβ

[
λ−AGS

]
14: Next
15: Next

The associative memory tells the agent which outcomes are important, and is more
general than the expectance memory, because it does not include responses in the as-
sociation. On the other hand, the expectance memory encodes reward expectation,
but is very specific. By combining the associative memory with the expectance mem-
ory, the learning model can more quickly adapt to small changes in the environment.
This can be seen by realizing that the causal model is non-directional, that is, indepen-
dent of the behavior of the agent. Therefore, if a stimulus B is adjacent to a stimu-
lus A, and stimulus B is moved to a different location, (but still adjacent to stimulus
A), the causal model will remain unchanged. In this case, the expectance memory
will have to change in two aspects; first it has to decrease the associative strength of
the A→(r1→B)-association (i.e. the expectance before B was moved and response
r1 would lead to A), and secondly it has to increase the associative strength of the
A→(r2→B)-association (the expectance after B was moved and whereby the new re-
sponse r2 will lead to B). Basically, a new response has to be learned. By combining
the two memories, the new association A→(r2→B), will be weighted by the associa-
tive memory, when that memory remains unchanged. This weighting can in turn lead
to a higher probability of the new response r2 being selected, under certain conditions
3.

The previous paragraph describes the procedure for selecting the best response. As
have been described in the literature review, it is important to maintain exploration.
Therefore, a response other than the best one has to be chosen on some occasions.
An ε-greedy exploration policy has been chosen for the new model4. Choosing the

3This idea has not been fully developed
4This means that the objective of introducing exploration as a specific drive has not been addressed

extensively. However, an ε-greedy policy can be viewed as a random drive. Ultimately though, nothing new
has been suggested for the problem of exploration. This is due to time-constraints.
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currently best known response in a given situation, is known as the greedy policy.
Under an ε-greedy policy the best response is selected with a probability of ε, whereas
an explorative response is chosen with a probability of 1-ε.

Dynamic change of learning rates

In the Rescorla-Wagner equation (3.2), the two learning rate parameters α and β, (spe-
cific to the conditioned stimulus and the unconditioned stimuli respectively), are de-
pendent on the salience of the corresponding stimuli. Additionally, according to the-
ories by [Pearce & Hall 1980], the α parameter changes as the discrepancy between
the associative strength of the CS with regards to the US becomes smaller [Pearce &
Bouton 2001]:

αAt =| λ−
n∑

i=0

Vi |t−1 (3.12)

Along the lines of the theories of [Rescorla & Wagner 1972] and [Pearce & Hall 1980],
two changes are therefore proposed. First, both α and β will be determined on the
basis of the relative salience all stimuli present. Secondly, alpha will be modulated
by equation 3.12. The initial learning rate of a CS or a US is thus set according to the
following equation:

αCS ← αmax
CS.strength∑
s∈Sc1

s.strength
(3.13)

βUS ← βmax
US.strength∑
s∈Sc2

s.strength
(3.14)

αmax and βmax refer to the maximum values that α and β can take on respectively. The
initialization of β can be solely determined by 3.14. On the other hand, α is determined
by both equation 3.12 and 3.13. In order to combine equation 3.12 and equation 3.13
to determine α, the following is suggested:

αCS ←
(
αmax

CS.strength∑
s∈Sc1

s.strength

)× | λUS −
∑

s∈Sc

Vs→US | (3.15)

3.1.4 The algorithms
Carrying on from the previous design section, the two algorithms; ”Trace” and ”Looka-
head”, are now presented with pseudo code in algorithm 8 (Trace) and algorithm 9
(Lookahead). As can be seen from inspecting the pseudo code for the second-order
conditioning methods (algorithms 4 (Trace causal model), 5 (Trace reward maximiza-
tion), 6 (Lookahead causal model), and 7 (Lookahead reward maximization)), the two
algorithms presented in algorithm 8 and algorithm 9 encapsulate first-order condition-
ing and second-order conditioning in a functional framework. This means that the
algorithms interact with an environment, i.e. the Grid World. Thus the method for
choosing responses (function 3.10 or 3.11), is utilized in order to find the best response
given the currently perceived stimuli compound. This should all be clear from the
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pseudo code, along with the design specification of the various components, (similar-
ity function, how responses are chosen, stimulus representation, internal drives), given
in the previous sections. The new learning model agent, which is termed Associative
Reinforcement Learner (ARL), hence has two algorithms at its disposal (i.e. ”Trace”
and ”Lookahead”). The relative merits of these two algorithms will be compared to
the performance of Q-learning, in experiments of which the results are presented in the
next chapter.

3.1.5 Implementation
The implementation of the new learning model (algorithms 8 ”Trace” and 9 ”Looka-
head”) is centered around a learning simulator framework which is implemented in the
Java programming language5. It is not the purpose of this thesis to report all the tech-
nical aspects of this simulator. Instead the main features of the simulator are presented
here, along with an illustration of the interaction between the ARL agent and the en-
vironment, as well as between the Q-learner agent and the environment. The learning
simulator has the following features:

• The ability to define a template list of stimuli

• The ability to add stimuli from the template list to the vector of internal drives
specific to the ARL agent

• The ability to add stimuli from the template list to spatial locations in the Grid
World

• The Q-learner agent is dependent on rewards provided by the environment, whereas
the ARL agent derives rewards on the basis of its internal drive vector. Hence
the learning simulator is able to synchronize the environment reward structure
provided for the Q-learner, based on reward definition of the ARL agent. This is
paramount when comparing the ARL agent with the Q-learner agent.

• The ability to calculate the minimal path cost (MPC) of the Grid World (without
obstacles). In the Grid World, as implemented in the simulator, there is a start
location and a goal location. The minimal path cost is the sum of all paths (in
number of movements) from each spatial location to the goal. Additionally, the
path cost for both ARL agent and Q-learner agent can be calculated and com-
pared to MPC.

• The ability to save/load Grid World stimuli layouts, ARL agent settings and in-
ternal drives, and Q-learner settings.

• The ability to save convergence results to file, as well as path costs.

• Live plotting of average fluctuation per episode in associative strength and Q-
values

5see appendix D for user instructions, and the attached CD-ROM for running the learning simulator.
Appendix B provides source code listings.
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Algorithm 8 Trace algorithm
1: Initialize:
2: PSc ← Nothing (Previous stimuli compound)
3: Sc ← Nothing (Current stimuli compound)
4: NSc ← Nothing (Next stimuli compound)
5: r ← Nothing (Response elicited to get from Sc to NSc)
6: pr ← Nothing (Response elicited to get from PSc to Sc)
7: AGS ← 0 (Aggregate Associative Strength)
8: AES ← 0 (Aggregate reward Expectance Strength)
9: MAS ← −∞ (Max Associative Strength)

10: MAES ← −∞ (Max reward Expectance Strength)
11: ST ← 0.85 (Similarity Threshold), δ ← 0.9 (decay parameter)

12: For each episode
13: Sc ← Perceive current stimuli compound
14: r ← cR(Sc) (According to function 3.10 or 3.11)
15: environment.doAction(r) (elicit response in environment)
16: NSc ← Perceive next stimuli compound
17: For each ns in NSc
18: AGS ← ∑

s∈Sc Vs→ns

19: AES ← ∑
s∈Sc Vs→(R→ns)

20: If AGS > MAS then MAS ← AGS
21: If AES > MAES then MAES ← AES
22: λAM ← max(∀id ∈ ID : sim(id, ns))
23: λEM ← max(∀id ∈ ID : sim(id, ns))× id.category
24: If λAM ≥ ST then
25: For each s in Sc
26: Vs→ns ← Vs→ns + αβ

[
λ−AGS

]
27: Vs→(R→ns) ← Vs→(R→ns) + αβ

[
λ−AES

]
28: Next
29: End if
30: Next

31: If PSc 6= Nothing Then
32: For each s in Sc
33: AGS ← ∑

ps∈PSc Vps→s

34: AES ← ∑
ps∈PSc Vps→(pR→s)

35: For each ps in PSc
36: Vps→s ← Vps→s + αβ

[
δMAS −AGS

]
37: Vps→(pR→s) ← Vps→(pR→s) + αβ

[
δMAES −AES

]
38: Next
39: Next
40: End if
41: pr ← r
42: PSc ← Sc
43: Sc ← NSc
44: Next
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Algorithm 9 Lookahead algorithm
1: Initialize:
2: Sc ← Nothing (Current stimuli compound)
3: NSc ← Nothing (Next stimuli compound)
4: r ← Nothing (Response elicited to get from Sc to NSc)
5: AGS ← 0 (Aggregate Associative Strength)
6: AES ← 0 (Aggregate reward Expectance Strength)
7: δ ← 0.9 (decay parameter)

8: For each episode
9: Sc ← Perceive current stimuli compound

10: r ← cR(Sc) (According to function 3.10 or 3.11)
11: environment.doAction(r) (elicit response in environment)
12: NSc ← Perceive next stimuli compound
13: For each ns in NSc
14: AGS ← ∑

s∈Sc Vs→ns

15: AES ← ∑
s∈Sc Vs→(R→ns)

16: λAM ← max(∀id ∈ ID : sim(id, ns))+ δ max(∀o ∈ O :
∑

ns∈NSc Vns→o)
17: λEM ← max(∀id ∈ ID : sim(id, ns)) × id.category + δ max(∀o ∈ O :∑

ns∈NSc Vns→(R→o))
18: For each s in Sc
19: Vs→ns ← Vs→ns + αβ

[
λ−AGS

]
20: Vs→(R→ns) ← Vs→(R→ns) + αβ

[
λ−AES

]
21: Next
22: Next
23: Next
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Figure 3.2: The interaction of the ARL agent and the Q-learner agent, with the Grid
world environment

Figure 3.2 shows the interaction of the ARL agent and the Q-learner agent, with
the Grid world environment. Additionally, a stimuli compound is illustrated. As can
be seen from the figure the illustration shows a 4x4 squares Grid World, with the grey
circles representing the spatial locations of the ARL agent and the Q-learner agent. The
arrows going out from each of the grey circles denote the possible actions/responses
available to the agents (i.e. the set of movements relative to the spatial locations; North,
North East, etc.). Each aspect of figure 3.2 will be described in the following subsec-
tions. This is important in order to depict the functionality of the learning simulator.

Grid world

The Grid World is a generic environment consisting of nxn squares (also known as
spatial locations). It has one start location, and one goal location, each of which can be
set to any spatial location. A learning agent interacting with the Grid world will begin a
learning episode in the start location and upon reaching the goal location, the learning
episode is over, and the agent is automatically moved back to the start location. Each
spatial location holds a vector of stimuli, i.e. a stimuli compound, that the learning
agent can perceive in some way upon reaching the spatial location in question. It is
possible to add/remove stimuli to/from any spatial location, through functionality in
the learning simulator.
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ARL agent

Upon entering a spatial location in the Grid world environment, the ARL agent per-
ceives a stimuli compound. According to algorithm 8 (Trace) or algorithm 9, it then
updates its associative memory and its expectance memory. The agent then communi-
cates a response to the Grid world environment, which updates its record of the posi-
tion of the ARL agent. Internally, the ARL agent maintains two lookup tables; one for
the associative memory and one for the expectance memory. The associative memory
lookup table stores (Stimulus,Stimulus)-pairs, whereas the expectance memory lookup
table stores (Stimulus,response,Stimulus)-pairs. Coarsely coded arrays are used for
both memories. Two stimuli can have the same modality, but different strength values.
Because the strength value is continuous by definition, and computer arrays are dis-
crete, the strength value is divided into n discrete slots. Hence the associative memory
array is indexed firstly by modality, and secondly by modality strength, where the clos-
est modality strength slot value of the array is used to index the modality strength of
a specific stimulus. For (Stimulus,Stimulus)-pairs, i.e. the associative memory (AM),
the array is indexed in the following way:

am[s1.modality][s2.modality][(int)s1.strength][(int)s2.strength],

where s1 refers to the stimulus preceding stimulus s2, and (int) refers to type casting
in Java6. Similarly the expectance memory (EM) is indexed in the following way:

em[s1.modality][(int)s1.strength][response][s2.modality][(int)s2.strength],

where response is an integer value representing any of the 8 possible responses avail-
able to the agent in the Grid World environment.

In reinforcement learning, the environment designer has control over the rewards
given to the agent in a direct way. This means that responses leading to no movement
(e.g. trying to walk of the edge of the Grid world) can be punished or given 0 reward
value. With the ARL agent this is not possible, because it derives its own reward val-
ues. The solution for punishing responses which lead to no movement is to prevent a
stimulus in becoming associated with itself. In the implementation of the ARL agent,
the value update rule is therefore cancelled if the update involves an association be-
tween a stimulus and itself. This prevents the agent from trying to walk of the edge of
the Grid world.

The dynamic change and initialization of learning rate parameters α and β, de-
scribed in section 3.1.3, has not been implemented for either the Trace algorithm or the
Lookahead algorithm. This is due to time constraints. Hence, both learning rates, α
and β, of the ARL agent are held constant during learning.

Q-learner

As have been described earlier, the Q-learner does not perceive stimuli compounds in
the same way as the ARL agent. Instead of forming associations with single stimuli,

6The strength of a modality is a real number. By casting the strength value to an integer (i.e. (int)), it can
be used as an array index.

54



the Q-learner agent forms associations with the stimuli compound. It thus perceives
the stimuli compound as a unit. The learning simulator provides the Q-learner with
a configural state description for each stimuli compound. This is implemented in the
following way: Given n possible modalities, each of which can take on a strength
value from the set {0, 1, . . . , m} (due to integer type casting as with ARL), the filter
function returns a string array with n items, where the item index represents modality,
and the item value represents the strength of that value. The string array is then used
as a unitary state description, which is utilized as a lookup key in the Q-value table
of the Q-learner. Upon entering a new spatial location, the Q-learner agent receives
a reward r and a state description s from the environment. In response the Q-learner
agent performs an action a, which it communicates to the environment, which in turn
updates its record of the Q-learner agent position. For specific details regarding the
Q-learning algorithm, see algorithm 3.

3.2 Testing: experimental design
In order to verify the new learning algorithms, Lookahead and Trace, available to the
ARL agent, and compare these algorithms to the Q-learning algorithm, the following
performance criteria have been specified:

• Whether or not the algorithm converges to the optimal policy

• Speed of convergence (either to optimal or sub-optimal policy)

• Generalization: Whether or not the sharing of stimuli across spatial locations in
the Grid world will increase the speed of convergence.

3.2.1 Convergence
Convergence is measured by recording the average absolute fluctuation in associa-
tive strength (for both associative memory and expectance memory) and Q-values per
episode. This is done by accumulating the absolute differences diffabs between the
respective values of the associative memory, expectance memory and the Q-values, and
their values after an update has been carried out. Additionally the number of steps to
reach the goal, episodelength, is recorded. The average absolute fluctuation (AAF),
is thus given by diffabs/episodelength. For Q-learning, there is only one Q-value
update per episode step, but for ARL there can be several updates of the associative
memory and the expectance memory. This is because of the consideration of states as
stimuli compounds, where each stimulus of the compound enters into separate asso-
ciations from the others, as is clear from the definition of algorithm 8 and algorithm
9. For ARL, it is therefore necessary to record the number of updates per episode
step numerrorsepisodestep as well. The average absolute fluctuation per episode for
ARL is therefore given by (diffabs/numerrorsepisodestep)/episodelength. AAF is
recorded for both the associative memory and the expectance memory. The definition
of convergence, according to [Russell & Norvig 2003], states that it is a function which
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Algorithm 10 Algorithm to find the cost of a given policy
1: function policyCost(policy)
2: policycost ← 0
3: For each l in (Grid world locations)
4: nl ← l
5: do
6: nl ← move(policy(nl.best response))
7: policycost ← policycost + 1
8: while(nl 6= goal)
9: Next

10: return policycost
11: End function

returns a contraction of its arguments. For Q-learning and ARL this function is repre-
sented by the respective value updates of the algorithms. As the algorithms converge
to the optimal policy the error of the associative memory, expectance memory, and the
Q-values will decrease (if there is convergence), and hence the average absolute fluctu-
ation will decrease as well. In this case the minimum point of convergence is 0, but due
to static learning rates, convergence will occur in the mean of the step-size parameters
α (for Q-learning and ARL) and β (for ARL).

3.2.2 Optimality
The optimal policy is the shortest path from any spatial location to the goal. By mea-
suring the number of steps, for a given policy, from each spatial location to the goal,
the policy cost is found. A Grid world policy states which response to elicit for each
spatial location, that is, for each stimuli compound. In order to have a basis of com-
parison with the policies found by the ARL agent and the Q-learner agent, the optimal
policy is found objectively in the following way:

∀l ∈ GridWorldlocations : l.best response ←
∀al ∈ adjacent(l) : argdirection(min(

√
(al.x− goal.x)2 + (al.y − goal.y)2))

The cost of the policy is then calculated according to the pseudo code in algorithm 10.

3.2.3 Generalization
Generalization in the Grid World means how the consideration of states as stimuli com-
pounds can help the transfer of learning between similar situations. When a stimulus
X, at two different locations signals the same outcome, there is said to be a sharing of
associations between the two locations. This can be most readily seen from figure 3.3.

In figure 3.3 stimulus X enters into an association with the outcome stimulus G.
This association is strengthened at two locations. Additionally, both stimulus A and B
enter into an association with G separately. In this situation it is said that stimulus X is
generalized from location (2,3) to location (3,2) and vice versa. There is thus a sharing
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Figure 3.3: Generalization in the Grid World, by means of sharing of stimuli across
compounds

of stimulus X between the stimuli compound at location (2,3) and the compound at
location (3,2). An algorithm which manages to gain a savings effect from this type of
sharing is said to be able to generalize. This generalization and sharing’s effect should
be manifested in faster convergence to the optimal policy if the algorithm is successful
in using the redundant association to its benefit. Generalization also means to change
a hypothical situation A on some accounts, which leads to the similar situation B. An
algorithm which has been trained in situation A, and which thereafter is able to use
this experience in situation B to find the optimal policy more rapidly than without this
similarity, is said to be able to generalize.

3.2.4 The experiments
On the basis of the criteria presented in the previous sections; i.e. convergence, opti-
mality, and generalization, a number of experiments have been designed. Firstly the
experiments aim to test for convergence to the optimal policy, and secondly for gen-
eralization. For testing of convergence three instances of the Grid world has been
employed, namely grid sizes of 3x3, 5x5 and 10x10. In each of these instances the
agent starts an episode in the upper left corner, and ends the episode in the lower right
corner (the goal). Thus the aim of the agent is to find the optimal policy, i.e. the least
number of steps from each location in the Grid world to the goal. For the purpose of
merely testing convergence to the optimal policy, the three instances of grid sizes con-
tain one stimulus per location, where all stimuli are neutral, except the stimulus at the
goal location, which is appetitive. Hence, for the ARL agent the stimulus at the goal
location has an outcome value of 1, because it is specified as appetitive in the ARL
agent’s list of internal drives. Similarly, for the Q-learner agent, the reward received
upon entering the goal location is 1, and 0 for all other locations. The two agents, ARL
and Q-learner, thus begin their learning with the same preconditions. Figure 3.4 shows
the three instances of the Grid world used to test convergence.

Two algorithms are available to the ARL agent, algorithm 8 (Trace) and algorithm
9 (Lookahead). Both of these algorithms can either combine the associative memory
with the expectance memory in order to find the best response (as in function 3.11),
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Figure 3.4: Grid sizes for baseline convergence experiments

or use the expectance memory by itself (as in function 3.11). For the ARL agent there
are therefore 4 combinations for each instance of the Grid world, giving a total of
12 combinations. The Q-learner agent has one set of options per experiment. In the
following table, the different combinations of the ARL agent are summarized for each
experiment:

Experiment Combine memories (EM & AM) Algorithm
3x3 yes Trace
3x3 no Trace
3x3 yes Lookahead
3x3 no Lookahead
5x5 yes Trace
5x5 no Trace
5x5 yes Lookahead
5x5 no Lookahead

10x10 yes Trace
10x10 no Trace
10x10 yes Lookahead
10x10 no Lookahead

• The following algorithm parameters are set for the ARL agent:

– σ = 0.2 (The sensitivity of the similarity function)

– α = 0.1 (Learning rate specific to the the CS)

– β = 0.1 (Learner rate specific to the US)

– ε = 0.8 (Choose the greedy response in 80% of the cases)

– ST = 0.85 (Used for the trace algorithm. Update first-order conditioning
if similarity to US is greater than.)
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– δ = 0.9 (Reward discounting)

• The following algorithm parameters are set for the Q-learner agent:

– α = 0.01 (Learning rate. Has been set to α ∗ β from ARL parameters.)

– γ = 0.9 (Reward discounting)

– ε = 0.8 (Choose the greedy response in 80% of the cases)

Generalization

The purpose of redefining states as stimuli compounds, (i.e. no longer as irreducible
entitities), is to achieve generalization. When stimuli are shared across stimuli com-
pounds (in two different, but similar situations), and when these shared stimuli signal
the same outcomes, an algorithm capable of generalizing should be able to exploit this
redundancy in the environment to gain an increase in convergence speed. The ARL
agent is able to take this redundancy into account by definition. What has been learned
during a learning period for one Grid World layout, should be able to transfer to the
same Grid world layout after some changes have been made to the layout. Four experi-
ments have therefore been designed to test whether the ARL agent will converge faster
in a slightly changed environment, than in an environment which has been changed
more. Each of these experiments have been divided into two phases; phase 1 and phase
2. In phase 1 the agent is trained with an initial Grid world layout, and in phase 2 this
initial Grid world layout is changed. The ’G’ in the lower right corner of each grid
world layout represents the goal stimulus and is the same for all layouts, for all exper-
iments and phases. Phase 1 has the same stimuli as phase 2 for all locations, unless
otherwise stated. E.g. in 3.5, ’AX’ in phase 1 refers to a stimuli compound contain-
ing the stimulus ’A’ and ’X’. All four experiments aim to test whether phase 2 will
converge faster to the optimal policy through generalization with phase 1. Two groups
are employed for each experiment. In group 1 there is supposed to be generalization
from phase 1 to phase 2 due to an environment change which leaves an aspect of the
environment layout intact, but changes another. Group 2, on the other hand, changes
the environment, but leaves no aspect of phase 1 similar in phase 2. If convergence is
faster in phase 2 of group 1, than in phase 2 of group 2, it can be seen as an indicator
of generalization.

The experiment in 3.5 aims to test whether the signalling of the goal G by stimulus
X in phase 1, will transfer to phase 2, where stimulus A has been replaced with stimu-
lus B in the stimuli compound of X. The stimuli compound AX is discriminatory with
regards to the stimuli compound BX, but obviously they share the stimulus X. In group
2, a different stimulus, Y, is added to the same position as stimulus B, whereas stim-
ulus X, from phase 2, is removed from the environment, so that there is no common
association with phase 1 (i.e. AZ→G share no stimulus with BW→G). The point of
the experiment is then to see whether there is any difference in convergence speed in
phase 2 of the two groups.

In figure 3.7 the shared stimulus (X) does not signal the goal directly. The experi-
ment aims to test whether there is any generalization between the two phases, when the
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Figure 3.5: Experiment 1, group 1

Figure 3.6: Experiment 1, group 2

Figure 3.7: Experiment 2, group 1

Figure 3.8: Experiment 2, group 2

shared stimulus signals another outcome than the goal. Apart from the spatial locations,
experiment 2 share the same characteristics as experiment 1.

The experiment in figure 3.9 aims to test whether placing two stimuli (X and Y) in
the same location for both phases, will increase the speed of convergence to the optimal
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Figure 3.9: Experiment 3, group 1

Figure 3.10: Experiment 3, group 2

policy. Thus stimulus X and Y are held in the same locations for both phases in group
1. In group 2, X and Y are replaced by Z and W for phase 1. It is thus predicted that
phase 2 of group 1 should generalize with phase 1 of group 1, and therefore not having
to relearn a policy for the changed stimuli (A and B are changed with C and D), but
use the remaining stimuli (X and Y). For group 2, the opposite is supposed to happen.
Because both compounds are changed (AZ and BW are changed to CX and DY), phase
2 of group 2 should take longer time to converge to the optimal policy than phase 2 of
group 1. If this is the case, then it can be seen as an indicator that the algorithm is able
to generalize.

Experiment 4 in figure 3.11 is similar to experiment 3, but has a more complex
environment and a larger Grid world configuration (10x10). Instead of changing two
stimuli compounds, three are changed, although in the same way as with experiment 3.

Experiment 1, 2, 3, and 4 will be tested on the ARL lookahead algorithm with
combined memories. Additionally, the Q-learning algorithm will be tested on these
experiments as well, to see whether it fails to generalize due to using configural state
representations. The same algorithm parameters as in the convergence experiments are
used for the generalization experiment.
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Figure 3.11: Experiment 4, group 1

Figure 3.12: Experiment 4, group 2

Avoiding aversive stimuli

Finally, a simple experiment has been designed involving a 10x10 grid world layout
with one aversive stimulus, and as usual, one appetitive stimulus. The point is to test
whether the ARL agent is able to avoid the aversive stimulus, but still approach the
appetitive stimulus. Refer to figure 3.13 for a specification of the experiment. The
stimulus denoted X- is aversive, S refers to the start location, and G is the appetitive
stimulus in the goal location. Hence, the aim of the agent is to avoid the aversive stim-
ulus, i.e. move around it. The optimal policy should then be sub-optimal with regards
to the standard 10x10 grid world convergence experiment, and therefore the policy
cost should be slightly higher. This experiment will be tested on the ARL lookahead
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Figure 3.13: 10x10 Grid world with aversive stimulus (X-)

algorithm (expectance memory only) and the Q-learner, with algorithm parameters be-
ing the same, except for learning rates, as for the convergence experiments. For ARL
lookahead the learning rates are: α = 0.5, β = 0.5. For Q-learning the learning rate
is: α = 0.25. Again, as for the convergence experiments, the testing criteria are con-
vergence, and optimality of policy.
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Chapter 4

Results

In this chapter the results from the experiments set out in the Methods chapter are
presented. An experiment to test convergence is first presented, and thereafter a gen-
eralization experiment. Finally, the results from a simple experiment to test whether
the agent is able to avoid aversive stimuli in the environment, are presented. The al-
gorithms share the same preconditions for all experiments (i.e. learning rate, reward
structure in the environment, and reward discounting). The differences between the two
algorithms can be found in the way in which the state signal is represented, and it is
therefore expected that the convergence experiments (and avoidance of aversive stim-
uli) will show no noteworthy differences between Q-learning and ARL (lookahead),
because the state signal is equal for the two agents by the definition of stimuli in the
environment. The ARL lookahead algorithm and Q-learning are functionally equiva-
lent; they both facilitate second-order conditioning on the basis of the best successive
prediction independent of the behavioral policy. ARL trace, on the other hand, caters
for second-order conditioning by using the best successive prediction from the behav-
ioral path of the agent. The difference between the ARL agent (lookahead) and the
Q-learner agent is representational. For ARL trace the difference is functional as well.

The real difference between the two agents is expected to be seen in the general-
ization experiment, where it is tested whether the agent is able to use learned behavior
from one situation in a similar situation1.

4.1 Convergence
First, and most importantly, the algorithms must be able to converge to the optimal
policy. This is a baseline result, and a minimum requirement. The purpose of the con-
vergence experiments is to show that the algorithms find the optimal policy and that the
prediction error decreases as the number of learning episodes increases. For Q-learning
the prediction error is given by the term α

[
r′ + γ maxa′ Q(s′, a′) − Q(s, a)

]
. Quite

similarly to Q-learning the ARL algorithms, trace and lookahead, use the [Rescorla &
Wagner 1972] prediction error term αβ

[
λUS −

∑n
i=0 VCSi

]
. Hence, both Q-learning

1For results data and experiment definitions, refer to appendix C
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and ARL use an error correction rule. The error given by these rules is averaged per
episode, in order to produce the convergence graphs, which plot the average absolute
fluctuation in Q-values, associative values, and expectance value. Secondly, the policy
cost is plotted per episode. Generalization is not attempted tested in the convergence
experiments. Thus, there is only one stimulus per spatial location. No statistical test is
made for the convergence experiments, i.e. each algorithm is run once for each Grid
world configuration (3x3, 5x5, 10x10). Because the algorithms are only run once per
configuration, there is no basis for statistical analysis2. Convergence is therefore only
measured qualitatively by means of the graph plot. If the average absolute fluctuation
moves towards 0 on the plot as the number of epochs increases, this is seen as an in-
dication of convergence. In the following pages graph plots are presented for the three
Grid world layouts (3x3, 5x5, 10x10), for each combination of the ARL agent (trace
and lookahed with or without combined memories), and for Q-learning. Each graph
plot figure is captioned to show which algorithm and combination is being plotted. Be-
low each graph the policy is illustrated after 10000 epochs (i.e. each experiment is run
10000 epochs for each algorithm combination). This policy figure shows the optimal
response in each spatial location. As described earlier the upper left corner is the start
location, and the lower right corner is the goal location. For a square Grid world, i.e.
where there are an equal number of vertical squares and horizontal squares, the optimal
policy cost can be calculated objectively either by algorithm 10 (which can also calcu-
late the cost for rectangular Grid World shapes), or by equation 4.1. Table 4.1 presents
a summary of the results for the convergence experiments.

policyCost =
m∑

n=2

(n + n− 1)(n− 1) (4.1)

m = number of horizontal or vertical squares

2A formal explanation will be given in the discussion chapter on why the algorithms converge or not
under the conditions set in the convergence experiments, and given the parameters of the algorithms.
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Figure 4.1: Q-learning 3x3
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Figure 4.2: Policy found (cost: 13)
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Figure 4.3: Q-learning 5x5
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Figure 4.4: Policy found (cost: 70)
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Figure 4.5: Q-learning 10x10
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Figure 4.6: Policy found (cost: 615)
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Figure 4.7: Trace 3x3 combine memories
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Figure 4.8: Policy found (cost: 13)
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Figure 4.9: Trace 3x3 expectance memory only
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Figure 4.10: Policy found (cost: 13)

70



Figure 4.11: Lookahead 3x3 combine memories
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Figure 4.12: Policy found (cost: 13)
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Figure 4.13: Lookahead 3x3 expectance memory only

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A
ve

ra
ge

ab
so

lu
te

flu
ct

ua
tio

n
pe

re
pi

so
de

Po
lic

y
co

st

Epochs

EM
Policy cost

Figure 4.14: Policy found (cost: 13)
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Figure 4.15: Trace 5x5 combine memories
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Figure 4.16: Policy found (cost: 70)
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Figure 4.17: Trace 5x5 expectance memory only
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Figure 4.18: Policy found (cost: 70)
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Figure 4.19: Lookahead 5x5 combine memories
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Figure 4.20: Policy found (cost: 70)
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Figure 4.21: Lookahead 5x5 expectance memory only
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Figure 4.22: Policy found (cost: 70)
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Figure 4.23: Trace 10x10 combine memories
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Figure 4.24: Policy found (cost: 615)
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Figure 4.25: Trace 10x10 expectance memory only
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Figure 4.26: Policy found (cost: 615)
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Figure 4.27: Lookahead 10x10 combine memories
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Figure 4.28: Policy found (cost: 615)
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Figure 4.29: Lookahead 10x10 expectance memory only
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Figure 4.30: Policy found (cost: 615)
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Table 4.1: Summary of results for convergence experiments. (MPC = Maximum Policy
Cost for learning period, OFPE = Optimal policy found after n epochs)

Problem Algorithm Convergence MPC OPFE
3x3 Trace CM no 15 16
3x3 Trace EM no 14 6
3x3 Lookahead CM yes 14 22
3x3 Lookahead EM yes 13 15
3x3 Q-learning yes 13 11
5x5 Trace CM no 74 97
5x5 Trace EM no 72 41
5x5 Lookahead CM yes 72 73
5x5 Lookahead EM yes 71 13
5x5 Q-learning yes 70 12

10x10 Trace CM no 692 420
10x10 Trace EM no 672 596
10x10 Lookahead CM yes 616 55
10x10 Lookahead EM yes 626 843
10x10 Q-learning yes 619 5352

4.2 Generalization
Section 3.2.4 describes the generalization experiments. Results from these experiments
are presented here. All in all 32 experiments were carried out, of which each were run
8 times. Each experiment run involved training for 9000 epochs. To recap the experi-
ment description from 3.2.4, for each experiment; in phase 2 of group 1, a small change
change is made in the environment with regards to phase 1. This change involves ma-
nipulating one or several stimuli compounds (containing two stimuli), by changing one
stimulus and leaving one stimulus intact from phase 1. For example, if stimuli com-
pound AX signals an outcome G in phase 1, then stimulus X is changed to Y in phase
2, yielding the stimulus compound AY. Now, because each stimulus of the compound
enters into an association with stimulus G, the association A→G is left intact in phase
2 of group 1, whereas the association X→G is removed and replaced with a new as-
sociation Y→G, which has to be learned. For group 2, both stimuli in the compound
AX are changed from phase 1 to phase 2, yielding the stimuli compound BY in phase
2. Thus, in phase 2 of group 2, two new associations (B→G and Y→G), have to be
learned. Each of the 4 experiments follow this general description, but differ with re-
gards to how many stimuli compounds are changed in the environment from phase 1 to
phase 2, as well as the location of the changed compounds. In experiment 1, one com-
pound signalling the goal is changed. Experiment 2 is similar to experiment 1, but the
changed compound is a cue, not for the goal, but for second-order conditioned stimuli.
In experiment 3 two stimuli compounds are changed, where one of them signals the
goal, whereas the other signals the first compound. Experiment 4 changes three com-
pounds lined up as a chain signalling the goal. For details regarding the Grid world
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layouts, see figure 3.5(group 1) and 3.6(group 2) for experiment 1, figure 3.7(group
1) and 3.8(group 2) for experiment 2, figure 3.9(group 1) and 3.10(group 2) for ex-
periment 3, and figure 3.11(group 1) and 3.12(group 2) for experiment 4. Table 4.2
presents the 32 experiment instances. It is important to note that the agent’s associative
memories (expectance memory (EM) and associative memory (AM) for ARL looka-
head, and Q-values for Q-learning), were NOT reset from phase 1 to phase 2. This
should be obvious when realizing that the purpose of the experiment is to test whether
what has been learned in phase 1 can be utilized in phase 2.

Each experiment instance was run 8 times with the goal of gathering raw data to
perform a statistical analysis in the form of a t-test. The raw data contains the following
for each algorithm:

• ARL looakahead: Average absolute fluctuation per episode in the associative
memory, Average absolute fluctuation per episode in the expectance memory,
and policy cost after each episode

• Q-learning: Average absolute fluctuation per episode in the Q-values, and policy
cost after each episode

The statistic used to perform the statistical analysis was the number of epochs3 before
the optimal policy was found and converged to4 in phase 2 of each group. This statistic
is referred to as Optimal Policy Refound (OPR). For each of the involved Grid world
sizes, the optimal policy costs can be found by equation 4.1:

• 3x3 optimal policy cost: 13

• 5x5 optimal policy cost: 70

• 10x10 optimal policy cost: 615

4.2.1 Hypotheses testing
In order to test whether the two algorithms, ARL lookahead and Q-learning, find the
optimal policy faster in phase 2 of group 1 than in group 2 or not (by the test statistic
OPR), a null hypothesis H0 and an alternative hypothesis Ha have been stated:

H0: there is no difference in mean OPR for phase 2 of group 1 and group 2(x1 = x2)
Ha: there is a difference in OPR for phase 2 of group 1 and group 2(x1 6= x2)

The independent variable is the difference in stimuli compounds between phase 1
and phase 2 of the two groups, and the dependent variable is the test statistic OPR. As
described earlier each experiment group have been run eight times. Hence, there are
8 samples of Phase 2 for each group of each experiment. Using the OPR test statistic,
an independent t-test performed in order to test the hypotheses. Regarding the assump-
tions: The two groups are independent because the agent’s associative memories are

3In this thesis, episode and epoch refer to the same thing.
4Converged to the optimal policy means that the policy cost was constant for the remaining epochs of the

experiment
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Table 4.2: The generalization experiments. (CM = combine memories)
Experiment Algorithm Group Phase

1 ARL lookahead (CM) Group 1 Phase 1
1 ARL lookahead (CM) Group 1 Phase 2
1 ARL lookahead (CM) Group 2 Phase 1
1 ARL lookahead (CM) Group 2 Phase 2
1 Q-learning Group 1 Phase 1
1 Q-learning Group 1 Phase 2
1 Q-learning Group 2 Phase 1
1 Q-learning Group 2 Phase 2
2 ARL lookahead (CM) Group 1 Phase 1
2 ARL lookahead (CM) Group 1 Phase 2
2 ARL lookahead (CM) Group 2 Phase 1
2 ARL lookahead (CM) Group 2 Phase 2
2 Q-learning Group 1 Phase 1
2 Q-learning Group 1 Phase 2
2 Q-learning Group 2 Phase 1
2 Q-learning Group 2 Phase 2
3 ARL lookahead (CM) Group 1 Phase 1
3 ARL lookahead (CM) Group 1 Phase 2
3 ARL lookahead (CM) Group 2 Phase 1
3 ARL lookahead (CM) Group 2 Phase 2
3 Q-learning Group 1 Phase 1
3 Q-learning Group 1 Phase 2
3 Q-learning Group 2 Phase 1
3 Q-learning Group 2 Phase 2
4 ARL lookahead (CM) Group 1 Phase 1
4 ARL lookahead (CM) Group 1 Phase 2
4 ARL lookahead (CM) Group 2 Phase 1
4 ARL lookahead (CM) Group 2 Phase 2
4 Q-learning Group 1 Phase 1
4 Q-learning Group 1 Phase 2
4 Q-learning Group 2 Phase 1
4 Q-learning Group 2 Phase 2
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reset for each group (i.e. phase 1 of each group is tabula rasa learning). For the two
other assumptions of the independent t-test; whether the samples are normally dis-
tributed and the homogeneity of variance, an inspection of the data samples is needed.

ARL lookahead has a sample mean OPR of 0 and a variance of 0 in phase 2 of
group 1 for all eight samples in experiments 1, 2, and 3, whereas for phase 2 of group 2
the mean OPR is 848, 217.625, and 825.375, and a variance of 124792, 32463.69643,
and 43929.41071, for experiments 1,2 and 3 respectively. Hence, for group 1 the data
is not normally distributed, and the variances are different from those of group 2, for
ARL lookahead in experiments 1, 2, and 3. There is therefore no basis for a t-test,
because the assumptions are violated. On the other hand, just by looking at the data
samples, it is obvious that the difference is big between groups 1 and 2. For all samples
from group 1 for experiments 1, 2, and 3, there is no change in policy cost due to the
change in the environment, whereas the change in policy cost is quite large for group 2.
It is therefore concluded, for ARL lookahead in experiment instances 1, 2, and 3, that
the difference between the two groups is so obvious that there is no need for statistical
analysis. However, due to the lack of a t-test for these instances H0 can neither be
rejected or retained. In the next chapter a formal analysis will be given on why the
ARL lookahead algorithm incurs no change in policy cost for group 1 of experiments
1, 2, and 3.

The situation is different for experiment 4 and the ARL lookahead algorithm. Table
4.6 shows a sample mean OPR of 496.375 for group 1 and 1059.75 for group 2. The
respective variances for group 1 and 2 are 15107.69643, 134965.0714. It is assumed
that the data is normally distributed for all eight samples in both groups. In order to
check whether the heterogeneity of variance is significant at the .05 level, an F Max test
is performed. In table 4.6 the f value is reported to be 0.009841503. The degrees of
freedom for the numerator is (n1-1) = 7, and (n2-1) = 7 for the denominator. According
to the f distribution [Coolidge 2000, Appendix E] this gives a critical value of 3.79 at
the .05 level of significance, which the f value does not exceed, so the heterogeneity
of variance is not significant. A one-tailed t-test is therefore performed (it is expected
that the difference between group 2 and group 1 is positive). Table 4.6 presents a t-
value of 4.397315147. At (n1+n2-2)=14 degrees of freedom, this gives a critical value
of 1.761 at the .05 level of significance ([Coolidge 2000, Appendix B]). The t-value
well exceeds the critical value at the .05 level, and also at the .01 level (critical value:
2.624), as well as at the .001 level (critical value: 3.787). It is therefore concluded
that the alternative hypothesis Ha is not rejected for the ARL lookahead algorithm for
experiment 4.

For Q-learning, a two-tailed t-test has been performed for all four experiments, be-
cause it is expected that the difference between group 1 and 2 can be either positive
or negative. As can be seen from tables 4.7, 4.8, 4.9, and 4.10, none of the f-values
exceed the critical value at the .05 level of significance (critical value: 3.79, as re-
ported in the previous paragraph), which means that the heterogeneity of variance is
not significant. As before, it is assumed that the samples from group 1 and 2 are
normally distributed. The t-values for experiment 1, 2, 3, and 4, are 1.574557199,
1.288501538, -0.455236673, and -1.168917156 respectively. According to the t distri-
bution [Coolidge 2000, Appendix B] the critical value for the .05 level of significance
(at (n1+n2-2)=14 degrees of freedom), is ±2.145. None of the t-values exceed or go
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below this critical value. It is therefore concluded that the null hypothesis H0 cannot
be rejected for Q-learning for neither of the four generalization experiments.

For purposes of visualization and comparison, the average convergence from phase
2 of group 1 and 2, is plotted in the same graph per algorithm and per experiment.
Additionally, the same is done for policy cost. This means that for ARL lookahead,
the average convergence, (the average of the average absolute fluctuation in associa-
tive memory and expectance memory per episode, for all 8 samples), is plotted in the
same graph for phase 2 for groups 1 and 2, (in different graphs for the EM and AM
memories). The same is done for the Q-values. If the policy is circular at any epoch
or never reaches the goal, the policy cost is reported as negative or positive infinity (as
implemented by the Java programming language) by the learning simulator. These val-
ues are considered as outliers and therefore irrelevant, and have been removed from the
results data which was used to produce the plots. Therefore, a sudden drop in policy
value below optimal on the plot, is an indication that the policy was circular or did not
lead to the goal5.

5This does not affect the test statistic.
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Table 4.3: Experiment 1, ARL
OPR OPR

Sample Group 1 (Phase 2) Group 2 (Phase 2)
1 0 910
2 0 933
3 0 4
4 0 843
5 0 1108
6 0 943
7 0 1103
8 0 940
x 0 848
S 0 353.2591117

S2 0 124792
MAX 0 1108
MIN 0 4

Table 4.4: Experiment 2, ARL
OPR OPR

Sample Group 1 (Phase 2) Group 2 (Phase 2)
1 0 310
2 0 0
3 0 455
4 0 312
5 0 271
6 0 16
7 0 14
8 0 363
x 0 217.625
S 0 180.1768476

S2 0 32463.69643
MAX 0 455
MIN 0 0
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Table 4.5: Experiment 3, ARL
OPR OPR

Sample Group 1 (Phase 2) Group 2 (Phase 2)
1 0 784
2 0 841
3 0 1087
4 0 482
5 0 751
6 0 921
7 0 644
8 0 1093
x 0 825.375
S 0 209.5934415

S2 0 43929.41071
MAX 0 1093
MIN 0 482

Table 4.6: Experiment 4, ARL
OPR OPR

Sample Group 1 (Phase 2) Group 2 (Phase 2)
1 455 1379
2 772 1787
3 564 768
4 389 715
5 470 1066
6 428 736
7 475 993
8 418 1034
x 496.375 1059.75
S 122.9133696 367.3759266

S2 15107.69643 134965.0714
MAX 772 1787
MIN 389 715

sum of sample squares 2076859 9929316
square of sum of samples 15768841 71876484

n 8 8
F Max test 0.009841503

t 4.397315147
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Table 4.7: Experiment 1, Q-learning
OPR OPR

Sample Group 1 (Phase 2) Group 2 (Phase 2)
1 2 446
2 946 527
3 1196 3
4 0 6
5 19 22
6 737 172
7 794 1006
8 1201 59
x 611.875 280.125
S 527.3349268 357.4742498

S2 278082.125 127787.8393
MAX 1201 1006
MIN 0 3

sum of sample squares 4941703 1522275
square of sum of samples 23961025 5022081

n 8 8
F Max test 0.326598388

t 1.574557199
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Table 4.8: Experiment 2, Q-learning
OPR OPR

Sample Group 1 (Phase 2) Group 2 (Phase 2)
1 386 391
2 493 0
3 14 425
4 404 4
5 449 12
6 18 4
7 497 433
8 405 391
x 333.25 207.5
S 199.9898212 216.9930874

S2 39995.92857 47086
MAX 497 433
MIN 14 0

sum of sample squares 1168416 674052
square of sum of samples 7107556 2755600

n 8 8
F Max test 0.83504932

t 1.288501538
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Table 4.9: Experiment 3, Q-learning
OPR OPR

Sample Group 1 (Phase 2) Group 2 (Phase 2)
1 5218 4626
2 3308 4113
3 4085 4967
4 4095 3039
5 3979 4556
6 4037 3690
7 4114 4479
8 4384 4747
x 4152.5 4277.125
S 528.4546203 637.131392

S2 279264.2857 405936.4107
MAX 5218 4967
MIN 3308 3039

sum of sample squares 139900900 149191941
square of sum of samples 1103568400 1170803089

n 8 8
F Max test 0.633950422

t -0.455236673
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Table 4.10: Experiment 4, Q-learning
OPR OPR

Sample Group 1 (Phase 2) Group 2 (Phase 2)
1 4797 4085
2 3806 4029
3 4201 5958
4 4638 6876
5 5452 5211
6 5632 6617
7 3838 3708
8 4433 4646
x 4599.625 5141.25
S 679.216973 1225.408591

S2 461335.6964 1501626.214
MAX 5632 6876
MIN 3806 3708

sum of sample squares 172481751 221970996
square of sum of samples 1354019209 1691676900

n 8 8
F Max test 0.142222382

t -1.168917156
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4.3 Avoidance of aversive stimuli
As described in the previous chapter, the experiment testing the avoidance of aversive
stimuli involves a 10x10 grid world with one aversive stimulus and one appetitive stim-
ulus. As in the convergence experiments, only one learning period has been carried out
for the two algorithms being tested, ARL lookahead and Q-learning. There is therefore
no basis for statistical analysis. The results are presented and interpreted qualitatively
in the form of a plot illustrating the average absolute fluctuation in the expectance
memory, and Q-values, as well as the policy cost for each episode. Each algorithm is
run for a learning period of 10000 epochs. Their respective plots show the progress
in convergence and policy cost as usual. For the convergence of ARL lookahead (ex-
pectance memory only), refer to figure 4.43. Figure 4.44 illustrates the convergence
of Q-learning. It can be seen from the plots that both algorithms converge to a policy
cost of 619, in contrast with the optimal policy cost of 615 for the 10x10 grid world
convergence experiment. This is because both the Q-learner and the ARL agent learns
to avoid the aversive stimulus6.

6As for the previous experiments, a formal analysis of the situation will be given in the discussion chapter.
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Figure 4.31: Experiment 1 (ARL lookahead): Associative memory average conver-
gence, and average policy cost, over 8 samples
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Figure 4.32: Experiment 1 (ARL lookahead): Expectance memory average conver-
gence, and average policy cost, over 8 samples
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Figure 4.33: Experiment 2 (ARL lookahead): Associative memory average conver-
gence, and average policy cost, over 8 samples
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Figure 4.34: Experiment 2 (ARL lookahead): Expectance memory average conver-
gence, and average policy cost, over 8 samples
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Figure 4.35: Experiment 3 (ARL lookahead): Associative memory average conver-
gence, and average policy cost, over 8 samples
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Figure 4.36: Experiment 3 (ARL lookahead): Expectance memory average conver-
gence, and average policy cost, over 8 samples
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Figure 4.37: Experiment 4 (ARL lookahead): Associative memory average conver-
gence, and average policy cost, over 8 samples
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Figure 4.38: Experiment 4 (ARL lookahead): Expectance memory average conver-
gence, and average policy cost, over 8 samples
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Figure 4.39: Experiment 1 (Q-learning): Associative memory average convergence,
and average policy cost, over 8 samples
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Figure 4.40: Experiment 2 (Q-learning): Associative memory average convergence,
and average policy cost, over 8 samples

97



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100
A

ve
ra

ge
A

A
F

ov
er

sa
m

pl
e

po
pu

la
tio

n

Po
lic

y
co

st

Epochs

Q-values phase 2, Group 1
Q-values 2, Group 2

Policy cost phase 2, Group 1
Policy cost phase 2, Group 2

Figure 4.41: Experiment 3 (Q-learning): Associative memory average convergence,
and average policy cost, over 8 samples

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

A
ve

ra
ge

A
A

F
ov

er
sa

m
pl

e
po

pu
la

tio
n

Po
lic

y
co

st

Epochs

Q-values phase 2, Group 1
Q-values 2, Group 2

Policy cost phase 2, Group 1
Policy cost phase 2, Group 2

Figure 4.42: Experiment 4 (Q-learning): Associative memory average convergence,
and average policy cost, over 8 samples
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Figure 4.43: Avoidance of aversive stimuli experiment (ARL lookahead): Convergence
of memory and policy cost
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Figure 4.44: Avoidance of aversive stimuli experiment (Q-learning): Convergence of
memory and policy cost
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Chapter 5

Discussion

5.1 Convergence

5.1.1 ARL Trace
For all experiments which are testing convergence, it is evident from the plots that
the trace algorithm (8) does not converge. Neither the associative memory nor the
expectance memory converges. However, the algorithm still finds the optimal policy in
all cases. As can be seen from figure 4.7, 4.9, 4.15, 4.17, 4.23 and 4.25, the average
absolute fluctuation increases as the number of epochs increases. The reason for this
increase can be realized by analyzing the Trace algorithm. For first-order conditioning
(i.e. lines 17-30 in algorithm 8), the algorithm only takes into account the immediate
value of the outcome, and not any second-order strength. This is why the similarity
threshold is needed on line 24. For this reason the Trace algorithm is unable to learn
that an outcome has lost its value; it can only learn the value of an outcome once, and
cannot reevaluate it below the level of the similarity threshold. A more serious problem
with the Trace algorithm, however, is manifested in the way second-order conditioning
is facilitated (lines 32-39 in algorithm 8). Second-order conditioning in Trace is based
on the maximum associative strength propagated from first-order conditioning, and
hence the algorithm fails to take into account the value of the outcome itself. For this
reason the algorithm does not converge, but rather the opposite; the error increases as
the number of epochs increase. An example will show why the associative memory and
the expectance memory does not converge under the control of ARL Trace. Consider
the Grid world in figure 5.1. The start state is the spatial location of stimulus A, and
the goal state is the spatial location of stimulus G, which is appetitive. All other stimuli
are initially neutral. Given two episodes (i.e. behavioral paths of the ARL agent), A
- B - G (E1), and A - B - C - G (E2), the algorithm can be analyzed to see why it
does not converge. In E1 the association B→G is updated by first-order conditioning
(lines 24-29 of algorithm 8). Additionally, stimulus B has the maximum associative
strength with regards to stimulus G. This maximum strength, stored in the variable
MAS for associative memory and MAES for expectance memory (lines 20-21 of
algorithm 8), is then transferred to the association A→B (second-order conditioning)

100



Figure 5.1: Sample 2x2 Grid world for ARL trace functionality demonstration

of episode E1 (lines 35-38 of algorithm 8). So far, everything is fine. The core of
the convergence problem for ARL Trace can be realized when analyzing what happens
in episode E2. In E2, the association B→C represents the maximum strength for the
first-order conditioning part of the trace algorithm (again lines 20-21 of algorithm 8).
Because the agent is at the start of its learning period, stimulus B has not yet gained
much associative strength with regards to stimulus C; in fact it will have gained as much
strength as stimulus A has with regards to stimulus B from E1. The point is, however,
that in E2, the associative strength of stimulus A with regards to stimulus B will be
updated with less associative strength than in E1, and hence the MAS and MAES
variable will be different from what they were in E1 for association A→B. This is
because the behavioral path of the agent is longer in E2 than in E1, and association
A→B will gain second-order strength not from B→G, but from B→C. Because the
associations are updated according to the behavioral path of the agent, the second-order
associations will never reach a stable asymptotic level under continued exploration, due
to the way in which second-order conditioning is facilitated in ARL trace.

The question is then: Why does the algorithm still find the optimal policy? To an-
swer this question, it is necessary to look at the algorithm parameters. For the conver-
gence experiments, the compound learning rate (i.e. α×β) is 0.01, and the exploration
parameter ε is 0.8. This means that the greedy response is chosen in 80% of the cases.
Additionally, the effects of any second-order conditioning update is minimized due to
the small learning rate. Because the greedy response is chosen most of the time, the
algorithm will mostly follow the currently known shortest behavioral path. When the
algorithm occasionally explores, the second-order associations will in some cases be
”wrongly” updated (i.e. in the direction of a sub-optimal policy), but this error will
be minimized by the small compound learning rate. Because the algorithm never stops
exploring, the policy will never stabilize and the second-order association will continue
to fluctuate according to the explorative behavior of the agent. In sum, under the given
conditions, ARL trace succeeds in improving the policy by continued exploration (Pol-
icy improvement), but fails in converging the association values of the policy to their
true value (Policy evaluation). The optimal policy value is affected by exploration, but
the effect is minimized by the small learning rate. Thus, the agent is able to follow the
optimal policy even though its true value is never found.
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5.1.2 ARL lookahead
In contrast with ARL trace, the ARL lookahead algorithm converges for the experi-
ments in the previous chapter. This is evident from the plots in figures 4.27, 4.29, 4.19,
4.21, 4.12, and 4.14. A natural question is then, why? Under certain conditions, which
hold for the convergence experiments, it can be shown by example that ARL lookahead
will converge. Consider table 5.1. The columns represent the number of steps from the
goal, and the rows represent time. Given a static poliy π, of 4 steps length; step 4 of
5.1 represent stimulus D, step 3 stimulus C, step 2 stimulus B, step 1 stimulus A, and
finally step 0 represent the goal stimulus G. There is thus a static behavioral path D -
C - B - A - G, where stimulus D is at the start location, and G is at the goal location.
Stimulus G is initially appetitive, whereas the other stimuli are initially neutral. At each
step, there is one possible response, namely to move to the next step. Upon reaching
the goal step (0, stimulus G), the agent is taken back to the start step (4, stimulus D).
The asymptotic value of moving from stimulus A to the goal stimulus G, here called
λG, is 1, and is given by:

λG = max(∀s ∈ ID : sim(s, US))× s.category

Furthermore, the value of moving from stimulus B to stimulus A, here called λA, is
given by:

λA = δλG

A general equation for the value of the next step asymptote of the example in table 5.1
(for second-order conditioning), can then be derived. Let n be the number of steps from
the goal. For n > 1, the equation is then:

λn = δn−1λG (5.1)

Second-order conditioning is thus given by the exponentially decreasing decay δ mul-
tiplied by the first-order asymptote λG. The ARL lookahead algorithm incorporates
first-order and second-order conditioning in one equation to derive the asymptote, and
thus effectively does the same thing as equation 5.1:

λ ← max(∀id ∈ ID : sim(id, ns)) + δ max(∀o ∈ O :
∑

ns∈NSc

Vns→o) (5.2)

where s: current stimulus, ns: next stimulus,
NSc: next compound, ID: vector of internal drives

For equation 5.1, the term max(∀id ∈ ID : sim(id, ns)) will be zero when the
next stimulus in the behavioral path is neutral, whereas the term δ max(∀o ∈ O :∑

ns∈NSc Vns→o) will be zero when the next stimulus is in the goal location. Thus for
all neutral stimuli, except those signalling the goal immediately, equation 5.2 is equiv-
alent to equation 5.1. Starting at time 1 and step 4 of table 5.1, equation 5.2 is then
applied iteratively at each step towards the goal. We can then see that the goal asymp-
tote λG propagates backwards, exponentially by the δ parameter, towards the start step
4 as time increases. For the example in table 5.1, the parameters of equation 5.2 rates
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were set to α = 0.9, β = 0.9, and δ = 0.9. At time 21, the policy π has converged to
its true value.

Regarding the necessary conditions of the ARL lookahead algorithm, the following
can be noted. The decay parameter δ must be in the range 〈0, 1〉. If the decay param-
eter is 0, the agent will not learn any associatons except for those involving the goal.
Contrarily, if the decay parameter is 1, the associative strength of all associations will
eventually converge to the asymptote of the appetitive stimulus, that is, 1. A necessary
assumption is also continued exploration; all states must be explored an infinite num-
ber of times in order to find the true policy value. ARL lookahead converges to the
optimal policy for two reasons. First, it always estimates the optimal policy (due to the
max lookahead term of equation 5.2). Secondly, once the policy has converged to its
true value, the shortest path will always have the maximum associative strength (due
to the exponential decay parameter). This can be seen from table 5.1; as the number of
steps to the goal decreases, the associative strength increases according to equation 5.1.
Finally, ARL lookahead is, as are other reinforcement learning algorithms, dependent
on the Markov assumption (see section 2.1.1). If the environment does not provide
a unique sequence of stimuli for all possible path combinations, the policy value will
not converge for the episodic case (i.e. as in the example from table 5.1 and the ex-
periments described in the previous chapter). Figure 5.2 illustrates the time-derivative
convergence of the example in table 5.1. Refer to figure 5.3 for an example of a Grid
World policy converged to its true value, as found by ARL lookahead. The lower right
square is the goal location, and the upper left square is the start location. The number in
each square, except the squares immediately adjacent to the goal, represents the decay
exponent of the best response association for that square’s stimulus as indicated by the
black arrow, i.e. the association between the stimulus in that square with the response
and the outcome stimulus (the square which the agent ends up in by eliciting the best
response). Hence, the predictions of the 5x5 Grid world policy (fig. 5.3) equals those
of table 5.1, for a decay parameter δ of 0.9.

5.1.3 Q-learning
For the baseline experiments (those testing convergence), the Q-learning algorithm is
functionally equivalent to ARL lookahead (or vice versa). Thus it converges for all
experiments given the same preconditions. In fact, the error correction rule used in
ARL lookahead is equivalent to the temporal-difference error correction rule used by
Q-learning, under the given conditions of the convergence experiments. These condi-
tions are; only one stimulus per spatial location; and that reward is only given upon
reaching the goal state, which is what makes the two error correction rules identical for
the convergence experiments. Consider the Q-value update:

Q(s, a) + α
[
r + γmaxa′Q(s′, a′)−Q(s, a)

]
(5.3)

Under the given conditions, r is equivalent to λG or the term max(∀id ∈ ID :
sim(id, ns)) from equation 5.2, which means that it is zero for all states except those
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Table 5.1: Example of stepwise convergence of the ARL lookahead algorithm
Steps from goal

4 3 2 1 0
0 0 0 0 1 1

Ti
m

e

0 0 0 0.81 1 2
0 0 0.59049 0.9639 1 3
0 0.43046721 0.8148762 0.993141 1 4

0.313810596 0.67583352 0.878826267 0.99869679 1 5
0.552306649 0.769072717 0.895026951 0.99975239 1 6
0.665592274 0.798598463 0.898874613 0.999952954 1 7
0.708640812 0.807013301 0.89975188 0.999991061 1 8
0.722954451 0.809251648 0.899946341 0.999998302 1 9
0.727305797 0.809818696 0.899988567 0.999999677 1 10

0.72854593 0.809957217 0.899997592 0.999999939 1 11
0.728882538 0.809990116 0.899999498 0.999999988 1 12
0.728970477 0.809997756 0.899999896 0.999999998 1 13
0.728992755 0.809999498 0.899999979 1 1 14
0.728998257 0.809999889 0.899999996 1 1 15
0.728999588 0.809999976 0.899999999 1 1 16
0.728999904 0.809999995 0.9 1 1 17
0.728999978 0.809999999 0.9 1 1 18
0.728999995 0.81 0.9 1 1 19
0.728999999 0.81 0.9 1 1 20

0.729 0.81 0.9 1 1 21
0.729 0.81 0.9 1 1 22
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Figure 5.2: Time derivative convergence of the ARL lookahead algorithm: from table
5.1
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Figure 5.3: A 5x5 Grid World converged to the optimal policy by ARL lookahead
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immediataly adjacent to the goal. Secondly, the term γmaxa′Q(s′, a′) is equivalent to
δ max(∀o ∈ O :

∑
ns∈NSc Vns→o) from equation 5.2, so that it is zero for the states

immediately adjacent to the goal. For the baseline convergence experiments the differ-
ence between the two algorithms, is hence that ARL lookahead derives the value of the
outcome on its own by means of internal drives, whereas Q-learning is provided with
a reward from the environment.

5.2 Generalization

5.2.1 ARL lookahead
According to the statistical analysis of the generalization experiments it was found
that, for experiment 4, the ARL lookahead algorithm found the optimal policy faster in
phase 2 of group 1 than in phase 2 of group 2. For experiments 1, 2, and 3, the policy
cost did not change at all from phase 1 to phase 2 of group 1, whereas it increased
and took some time to decrease again to the optimal policy cost for phase 2 of group
2. However, because the variances of the two groups for experiments 1, 2, and 3, for
the test statistic, were significantly different, no t-test could be performed. Although
the raw data showed no change in policy cost in phase 2 of group 1 for the first three
experiment, this does not necessarily mean that the policy remained unchanged. Rather,
the policy can change without incurring an increase in policy cost (i.e. there is more
than one optimal policy). Both this, and why the algorithm found an optimal policy
faster in phase 2 of group 1 for experiment 4, can be shown by analyzing the situation.

Consider a stimuli compound AX which signals the appetitive stimulus G. The
asymptote λG of the stimulus G is 1. According to the [Rescorla & Wagner 1972]
equation, which is incorporated in the ARL lookahead algorithm, stimulus A and X will
enter into separate associations with stimulus G. More importantly, however, is the way
in which stimulus A and X gains associative strength with regards to the asymptote λG.
The strength of each association is updated on the basis of the discrepancy between λG

and the aggregate associative strength of the compound, i.e.
[
λG− (VA→G +VX→G)

]
.

Assuming that stimulus A and X are equally salient, they will have the same learning
rate α. The learning rate specific to stimulus G, β, is also considered constant. Hence,
what will happen is that both associatons, A→G and X→G, will gain an equal amount
of associative strength when the asymptote is reached. This can be seen from the
following equations:

VA→G,t ← VA→G,t + αβ
[
λG − (VA→G,t−1 + VX→G,t−1)

]

VX→G,t ← VX→G,t + αβ
[
λG − (VA→G,t−1 + VX→G,t−1)

]

Both associations will thus eventually reach an associative strength of λG/2 when t
increases infinitely. This is exactly what happens for the stimuli compounds in phase 1
of groups 1 and 2 for the generalization experiments. With this insight it is possible to
analyze the generalization experiments. Now, consider what happens when stimulus A
is replaced with stimulus B, yielding the new compound BX (as is done from phase 1
to phase 2 in group 1 for generalization experiments 1 and 2, see figures 3.5 and 3.7).
Stimulus B will then have no associative strength with regards to G, whereas stimulus A
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still will have an associative strength of 0.5, giving a compound associative strength for
BX of 0.5. There are two effects of this for phase 2 of group 1. First, it will undoubtedly
affect the policy, but not necessarily the policy cost. Secondly, as learning continues
towards the asymptote λ in phase 2, stimulus X will gain more associative strength than
stimulus B, because stimulus X already has an associative strength of 0.5. In associative
learning theory, this is known as blocking, (or in this case partial blocking). This is a
direct effect of the Rescorla-Wagner equation [Rescorla & Wagner 1972]. Because the
associative error λG−VX is smaller for stimulus X than the associative error λG−VB

for stimulus B, both stimuli will gain as much associative strength when the asymptotic
level is reached (an increase of 0.25), but because stimulus B already had an associative
strength of 0.5, there is only room for another 0.5 units of associative strength which is
divided equally between stimulus X and B. This can be seen from table 5.2, where the
asymptotic level is reached at time step 30. Next consider what happens for phase 2 of
group 2. Here, the stimuli compound AX is changed to BY, and hence both stimulus B
and Y will have an initial associative strength of 0 at the beginning of learning in phase
2. Table 5.3 illustrates the number of time steps before the asymptotic level is reached,
which is 31. Both table 5.2 and 5.3 used a compound learning rate of 0.25 (0.5×0.5).
For such a large learning rate the difference in asymptotic level of convergence is only 1
time step, between phase 2 of groups 1 and 2, according to table 5.2 and 5.3. However,
as is indicated in the plot in figure 5.4, where the compound learning rate was set to 0.01
(α=0.1, β=0.1), the effects on convergence increases as the learning rate decreases: The
associative strength of compound BX of Phase 2 of Group 1 converges to the asymptote
at time step 1027, whereas the associative strength of compound BY of phase 2 of
group 2 converges at time step 1062. More importantly, however, is the difference in
associative strength between the compounds at the beginning of the learning periods of
phase 2 of group 1 and 2. This difference, as will be shown below, is what really affects
the policy value and implicitly the policy cost for the generalization experiments, under
the given conditions and algorithm parameters.

By inspecting the policy costs, at the beginning of the learning period, for the ARL
lookahead algorithm, it is evident what is happening in phase 2 of group 1 and group
2. Consider the policy cost of ARL lookahead, at the end of the learning period of
phase 1 of group 1, for generalization experiment 1 as given in figure 5.5. Here, the
policy has converged to its true value, and the optimal policy is stable. Moving on to
the beginning of the learning period of phase 2 of group 1 (figure 5.6), it can be seen
that the associative strength of the modified compound (in square (1,2)) has decreased
to half the value of the initial compound of phase 1 of group 1, i.e. 0.5. This is because
one stimulus was swapped with a new stimulus for phase 2. Now, by looking at figure
5.6, it can be seen that this change in compound associative strength with regards to
the goal in the lower right corner, does not affect the policy cost. The path (1,3) - (2,2)
- (1,1) is equal in length to the path (1,3) - (1,2) - (1,1). Hence there is no change
in policy cost for phase 2 of group 1 in experiment 1. Furthermore, the associative
strength of the changed compound towards any outcome in phase 2 of group 2 is 0
at the beginning of the learning period, because both stimuli are changed from phase
1 to phase 2. The associative memory does not yet know which response is best for
the new compound. If the agent then by pure chance takes the path sub-optimal path
(1,3) - (1,2) - (2,2), the new compound will update its associative strength towards the
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Figure 5.4: Example: convergence of compound BX and BY of phase 2 of groups 1
and 2
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stimulus in square (2,2). Because the agent has seen nothing else, this association will
be the maximum of square (1,2). It is thereby obvious that the policy is sub-optimal
at this stage, because the agent will choose the path (1,2) - (2,2) - (1,1), which is one
step longer than the optimal path; (1,2) - (1,1). For phase 2 of group 1, this can not
happen because the remaining stimulus still signals the goal location. Although not a
full analysis of what happens when the stimuli compound is completely changed, this
gives an idea of why the policy cost changes.

By applying the same type of analysis to generalization experiment 2, it can be
realized why the policy cost changes in phase 2 of group 2, but remains unchanged in
phase 2 of group 1. For experiment 2 the stimuli compound in square (3,3) is changed
from phase 1 to phase 2. By referring to figure 5.9, it is seen that the remaining stimulus
in phase 2 of group 1 holds half of the associative strength of the initial compound from
phase 1, i.e. 0.45, which still signals the shortest path towards the goal in the lower right
corner; (3,3) - (2,2) - (1,1). Therefore the policy cost remains unchanged in phase 2
of group 1. On the other hand, for the same reasons as in experiment 1, the policy
cost changes in phase 2 of group 2. Again the compound associative strength of the
two new stimuli is 0 at the beginning of the learning period of , that is, the agent does
not yet know which is the best response in square (3,3). If the agent then moves from
square (3,3) to square (2,3) in figure 5.9, the policy will be sub-optimal.

In generalization experiment 3, not one, but two stimuli compounds are changed
from phase 1 to phase 2. According to the results statistics the policy cost does not
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Table 5.2: Learning for compound BX in phase 2 of group 1
VX VB

0.5 0 1

Ti
m

e

0.625 0.125 2
0.6875 0.1875 3

0.71875 0.21875 4
0.734375 0.234375 5

0.7421875 0.2421875 6
0.74609375 0.24609375 7

0.748046875 0.248046875 8
0.749023438 0.249023438 9
0.749511719 0.249511719 10
0.749755859 0.249755859 11

0.74987793 0.24987793 12
0.749938965 0.249938965 13
0.749969482 0.249969482 14
0.749984741 0.249984741 15
0.749992371 0.249992371 16
0.749996185 0.249996185 17
0.749998093 0.249998093 18
0.749999046 0.249999046 19
0.749999523 0.249999523 20
0.749999762 0.249999762 21
0.749999881 0.249999881 22

0.74999994 0.24999994 23
0.74999997 0.24999997 24

0.749999985 0.249999985 25
0.749999993 0.249999993 26
0.749999996 0.249999996 27
0.749999998 0.249999998 28
0.749999999 0.249999999 29

0.75 0.25 30
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Table 5.3: Learning for compound BY in phase 2 of group 1
VX VB

0 0 1

Ti
m

e

0.25 0.25 2
0.375 0.375 3

0.4375 0.4375 4
0.46875 0.46875 5

0.484375 0.484375 6
0.4921875 0.4921875 7

0.49609375 0.49609375 8
0.498046875 0.498046875 9
0.499023438 0.499023438 10
0.499511719 0.499511719 11
0.499755859 0.499755859 12

0.49987793 0.49987793 13
0.499938965 0.499938965 14
0.499969482 0.499969482 15
0.499984741 0.499984741 16
0.499992371 0.499992371 17
0.499996185 0.499996185 18
0.499998093 0.499998093 19
0.499999046 0.499999046 20
0.499999523 0.499999523 21
0.499999762 0.499999762 22
0.499999881 0.499999881 23

0.49999994 0.49999994 24
0.49999997 0.49999997 25

0.499999985 0.499999985 26
0.499999993 0.499999993 27
0.499999996 0.499999996 28
0.499999998 0.499999998 29
0.499999999 0.499999999 30

0.5 0.5 31
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change for phase 2 of group 1, but does for phase 2 of group 2. In figure 5.12 the
compound associative strength of the two changed compounds, at squares (3,3) and
(2,2), have half the associative strength of the initial value in figure 5.8; 0.45 and 0.5.
For phase 2 of group 2 (fig. 5.10, the compound associative strength is zero for both the
changed compounds. As usual one stimulus is changed for each compound from phase
1 to phase 2 in group 1, whereas both stimuli in each compound are changed from phase
1 to phase 2 in group 2. As pointed out earlier, even though the policy cost does not
change, the policy can still change to an alternative optimal policy. This has most likely
happened in phase 2 of group 1 for experiment 3. However, the remaining stimulus in
each compound for phase 2 in group, still signals the optimal path towards the goal.
This is why the agent will not be lead along a sub-optimal path by the remaining stimuli
of the changed compounds. Still, because the changed compound of phase 2 of group
1 has not yet regained its true value, the agent will take an alternative path around the
change compounds until the true value has been reinstated. The alternative path in
phase 2 of group 1 does not incur an extra cost under the given circumstances. For
phase 2 of group 2, the policy cost will increase for the same reasons as in experiment
1 and 2, but because more is changed and the environment is more complex, the effect
on the policy cost is greater.

Experiment 4 is a more interesting case because the policy cost changes in phase
2 of both group 1 and 2. According to the statistical analysis, however, the optimal
policy is more quickly refound in phase 2 of group 1 than in phase 2 of group 2.
Consider figure 5.14 for the initial policy value after learning is completed in phase 1
of group 1, and figure 5.15 for the policy value at the beginning of the learning period
in phase 2 of group 1. In experiment 4, the compounds at squares (4,4), (3,3), and
(2,2) are changed from phase 1 to phase 2. Thus, the respective compound values are
half of the values in figure 5.14, i.e 0.4, 0.45, and 0.5, for phase 2 of group 1. For
phase 2 of group 2, figure 5.16, the compound associative strength is 0 for all three
compounds. For an insight into why the policy cost changes in phase 2 of group 1,
consider the following path taken randomly by the agent; (5,5) - (4,5) - (3,4) - (2,3)
- (1,2) - (1,1). This path is sub-optimal by one cost unit, but because the original
optimal path (5,5) - (4,4) - (3,3) - (2,2) - (1,1), (which goes along the changed stimuli
compounds), has lost half of its associative strength, the agent will continue to estimate
the value of the sub-optimal path until the optimal path has regained its true value. It
can therefore be concluded that, when one stimulus is changed for each of the three
compounds, the policy temporarily loses its true value, but the remaining stimulus of
the changed compounds continues to maintain the optimal path although at an initially
lower associative value. Therefore the optimal path will temporarily be avoided until
it has regained its true value. On the other hand, when the compounds are changed
altogether as in phase 2 of group 2, there is nothing left in the changed compounds
to signal the best response, and consequently the agent will in many cases choose a
sub-optimal policy due to necessary exploration. The error in policy value will then
propagate to other spatial locations, and it will take longer time to refind the optimal
policy in phase 2 of group 2.

To summarize the generalization experiments for the ARL lookahead algorithm:
In phase 2 of Group 1 the policy will change (either to a sub-optimal policy or to an
alternative optimal policy), but the remaining stimuli in the changed compounds still
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Figure 5.5: Generalization experiment 1 (ARL lookahead):Policy value @ end of learn-
ing period for phase 1 of group 1

signal the optimal path, and have a higher level of compound associative strength than
the changed stimuli compounds in phase 2 of group 2. Therefore, due to remaining
but weaker associations, the optimal policy will more quickly be reinstated in phase
2 of group 1 than in phase 2 of group 2 (which has no remaining associations in the
changed compounds). Thus the OPR statistic will be lower in phase 2 of group 1, than
in phase 2 of group 2. This applies to all 4 generalization experiments, under the given
conditions and algorithm parameters.

5.2.2 Q-learning
As described earlier, Q-learning considers states (stimuli compounds) as irredicuble
entities. For the implementation of Q-learning in this thesis, it thus maintains a con-
figural approach to stimuli compounds, or in other words, each compound is unique
no matter if it shares stimuli with other compounds. As long as the compounds differ
on some account they are considered different and unique. For this reason, there is an
equal amount of difference between phase 1 and 2 of both group 1 and 2. This can
be seen from figures 5.18 and 5.19, where the initial policy value at the beginning of
the learning periods for phase 2 of group 1 and 2 are illustrated. Hence, for the illus-
trated experiment (number 4), where the compounds in squares (4,4), (3,3), and (2,2)
are changed from phase 1 in group 1 (figure 5.17) and phase 1 in group 2 respectively,
the policy value will be 0 for the changed compounds in phase 2. Therefore, the Q-
learner agent will suffer from the exact same problem in phase 2 of both group 1 and
2, as the ARL lookahead algorithm did in phase 2 of group 2 for all four generalization
experiments. The same analysis therefore applies to the Q-learnier agent for each gen-
eralization experiment. In other words, it has to learn as much in phase 2 of both group
1 and 2 as ARL lookahead has to learn in phase 2 of group 2. It can be concluded that
the statistical analysis of the previous chapter correctly indicates that there is no differ-
ence between groups 1 and 2 for Q-learning, and thus that it is not able to generalize
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Figure 5.6: Generalization experiment 1 (ARL lookahead):Policy value @ beginning
of learning period for phase 2 of group 1

Figure 5.7: Generalization experiment 1 (ARL lookahead):Policy value @ beginning
of learning period for phase 2 of group 2

113



Figure 5.8: Generalization experiment 2 (ARL lookahead):Policy value @ end of learn-
ing period for phase 1 of group 1

under the given experiment conditions and algorithm parameters.

5.3 Avoidance of aversive stimuli
As its name implies the point of the aversive stimuli avoidance experiment was to show
that the agent took an alternative path around the aversive stimulus. This is exactly
what happens. Consider the policy illustrations in figure 5.20 and 5.21. Square (6,6)
contains the aversive stimulus. The raised arrows of each figure show the alternative
path found by the agent. This alternative path adds an extra 4 policy costs units to
the optimal cost of 615, resulting in a policy cost of 619. Upon reaching square (6,6)
the Q-learner agent will receive a reward of -1, whereas the ARL agent will perceive
the aversive stimulus, compare it to its list of internal drives, and derive a value of
-1. All associations involving the aversive stimulus will therefore be negative for the
expectance memory of the ARL agent. Similarly, for the Q-learning agent, the state-
action values signalling the aversive stimulus will also be negative. Square (6,6) will
therefore be avoided by both Q-learning and the ARL lookahead algorithm. Notice also
the policy value in square (10,10), which normally (withouth any aversive stimulus
at square (6,6)) would be 0.43 (δ8; 9 steps from the goal), but is now 0.39 (δ9: 10
steps from the goal). Consequently, by adding the aversive stimulus at square (6,6) the
policy cost will increase, and the policy value will decrease for the associations along
the affected paths.

5.4 Generalizability of results
No claim is made about the generalizability of the above results in domains other than
the Gridworld environment. The Gridworld environment is an abstract ”toy problem
environment”, and for this project the problem facing the agent has been one of finding
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Figure 5.9: Generalization experiment 1 (ARL lookahead):Policy value @ beginning
of learning period for phase 2 of group 1

Figure 5.10: Generalization experiment 2 (ARL lookahead):Policy value @ beginning
of learning period for phase 2 of group 2
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Figure 5.11: Generalization experiment 3 (ARL lookahead):Policy value @ end of
learning period for phase 1 of group 1

the shortest path from one spatial location to another by means of associating stim-
uli from one spatial location to another. Also, for such a problem, it has been shown
how the agent can avoid spatial locations with low utility (i.e. aversive stimuli), and
generalize one set of stimuli in a Gridworld environment, to another set of stimuli in
a Gridworld environment, when these two environment share most elements but differ
on a few. As a theoretical framework, the Gridworld is very popular in the field of
Reinforcement learning (see [Sutton & Barto 1998]). This is because, by definition,
all states are unique (when 2d coordinates are used as state description), and the state
space is small and manageable so that lookup tables can be utilized. Hence, the Markov
property is easily maintained. In this project the state description is not automatically
unique, because stimuli compounds are utilized for state description. However, for all
experiments each spatial location have been defined with a unique stimuli compound.
Therefore, the Grid world, as defined in the experiments of this project, meet the as-
sumptions of the original simple Gridworld definition which uses 2d coordinates for
state description. The Gridworld environment is popular because many real problems,
such as board games, can be abstracted in terms of shortest path solutions (i.e. where
reward expectance is highest). It can be questioned, however, whether any given prob-
lem can be stated and solved in terms of reward maximization. Ignoring this question,
real world problems with complex environments have sophisticated state descriptions
(just consider the number of stimuli for a board configuration in the game of chess, or
merely describing what a stimulus is for this game). In real problems, there is always
an intricate correlation between elements of the state description, and any decision
(the choice of response) would necessarily need to involve some thought process or
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Figure 5.12: Generalization experiment 3 (ARL lookahead):Policy value @ beginning
of learning period for phase 2 of group 1

Figure 5.13: Generalization experiment 3 (ARL lookahead):Policy value @ beginning
of learning period for phase 2 of group 2
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Figure 5.14: Generalization experiment 4 (ARL lookahead):Policy value @ end of
learning period for phase 1 of group 1
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Figure 5.15: Generalization experiment 4 (ARL lookahead):Policy value @ beginning
of learning period for phase 2 of group 1

Figure 5.16: Generalization experiment 4 (ARL lookahead):Policy value @ beginning
of learning period for phase 2 of group 2
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Figure 5.17: Generalization experiment 4 (Q-learning):Policy value @ end of learning
period for phase 1 of group 1

Figure 5.18: Generalization experiment 4 (Q-learning):Policy value @ beginning of
learning period for phase 2 of group 1
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Figure 5.19: Generalization experiment 4 (Q-learning):Policy value @ beginning of
learning period for phase 2 of group 2
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Figure 5.20: Avoidance of aversive stimuli experiment (ARL lookahead): Optimal
policy cost @ end of learning period

Figure 5.21: Avoidance of aversive stimuli experiment (Q-learning): Optimal policy
cost @ end of learning period
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model of the environment dynamics to understand this correlation. The Gridworld en-
vironment elegantly avoids this kind of complexity, because the problem is only one
of changing position from one location to another with a minimum number of move-
ments. Hence the agent can follow the shortest path according to reflexive responses
which react most strongly to the maximum reward expectance. There is no thought
process involved, and the environment model is no more complex than a causal map
showing which state immediately follows another state. To apply the ARL lookahead
algorithm to any other problem than the Gridworld environment, the concept of stim-
ulus and stimuli compounds would need to be redefined, and a significant amount of
engineering would most likely be needed. On the other hand, the same can be said
for Q-learning. It is not an all-purpose problem solver which can be applied blindly
without analysis of the state description and environment model. However, given a
stimulus definition and an environment which meet the conditions and assumptions of
the experiments in this project, it is probable that the ARL lookahead algorithm can
have some use and show generalization for other problems too.

5.5 A note on combining the expectance memory and
the associative memory

For static environments, as in the convergence experiments, combining the expectance
memory and the associative memory has the effect of squaring the associative strength,
because the associative memory and the expectance memory will gain the same amount
of strength. For example, the association A→G from the associative memory might
have a strength of 0.9, whereby the association A→(R→G) from the expectance mem-
ory will have the same strength. The combined value will then be 0.81, due to the
choose response function:

cR(Sc) ← (∀r ∈ R, ∀o ∈ (Sc → O) : max
r

( ∑

s∈Sc

Vs→(r→o) ∗ Vs→o

)
) (5.4)

This does not affect the policy value or the convergence to the optimal policy. The
only effect is on the choice of responses, but because the combination of memories for
the choose response function effectively results in squaring the associative strength,
it is not affected either. Therefore the combination of memories is of no use in sim-
ple static environments as employed for the convergence experiments and the avoid-
ance of aversive stimuli experiment. On the other hand, although not analyzed above,
the generalization experiments involved an ARL lookahead algorithm using combined
memories. The analysis of generalization assumed an ARL lookahead algorithm using
the expectance memory only, because it is thought that the combination of expectance
memory and associative memory would have no effect on the ”dynamic” environments
of the generalization experiments. This might not be the case though. The only way
to find out if the combination of memories does affect the generalization experiments,
would be to run them again using only the expectance memory. If it is then shown that
there is a difference between using combined memories and expectance memory only,
the above analysis might be incomplete. It must be stressed that the generalization ex-
periments were run with combined memories, and that this might be the reason why
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the ARL lookahead algorithm refound the optimal policy faster in phase 2 of group 1
than in phase 2 of group 2. Testing this has been beyond the time-limits of this project,
but the combination of memories might have had an unforeseen effect that the author
was unaware of.

5.6 Extinction
Although not tested in any of the experiments, the ARL agent will by definition be
able to reevaluate outcomes, and thereby determine if they have lost their value. This
is due to the definition of internal drives, which the ARL agent uses to derive outcome
values. If a drive corresponding to a specific outcome ceases to exist, the outcome will
be worth 0 (for first-order conditioning), and consequently the associative strength of
stimuli that have been previously associated with the outcome will decrease in strength.

5.7 The XOR problem revisited
It shall be noted that with the elemental approach of association formations that has
been employed in the ARL agent’s associative memory and expectance memory in this
thesis, the XOR problem cannot be solved. Actually, the problem has been avoided by
all experiments (i.e. all experiments employ environments with unique stimuli com-
pounds across all spatial locations). However, as proposed by [Rescorla & Wagner
1972], the XOR problem can be remedied by adding a separate and unique configural
unit for the stimuli compound as a whole, i.e. as in Q-learning. This unit will then
gain as much strength as the sum of elemental strength in combination with any given
compound. For compounds where one stimulus is discriminatory towards an aversive
outcome, but the other stimuli of the compound signal the outcome as appetitive, an
additional configural unit can be applied in order cancel the associative strength of the
stimuli which falsely signal the outcome as appetitive. It is not straightforward, how-
ever, for the algorithm to ”know” when to apply learning to the configural unit, and
when to apply learning to the elemental components.

5.8 Objectives
The objectives of this project were defined to modify the Q-learning framework, and
thereby aiming at improving the algorithm. It has been showed above that, under the
conditions of the experiments, the Q-learning algorithm and the ARL lookahead are
functionally equivalent. This is explained in section 5.1.3. The difference betweeen the
ARL lookahead and Q-learning is purely representational. As described in section 5.2,
this is what makes the ARL lookahead algorithm capable of generalization. Reconsider
the objectives of this project:

1. To incorporate psychological bias in the architecture of the agent that will guide
its learning process. Internal drives will be introduced, that will make the agent
approach appetitive stimuli and avoid aversive stimuli.
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2. To endow the agent with the ability to form other types of association other than
S-R associations. Associative theory envisages three types of association:

• Stimulus-Response (S-R) associations.

• Stimulus-Stimulus (S-S) associations.

• Response-Outcome (R-O) associations.

3. To take into account associative theory’s conception of event representation.

4. To redefine outcomes as comprising sensorial and motivational elements.

5. To take into account the fundamental conditions of association formation pro-
posed by associative theory.

Each objective, as described in the above list, has been met, and together provide
a sufficient framework for generalization. Objective 1 is necessary for the agent to be
able to derive outcome values. In order to be able to derive outcome values in the first
place, the agent must be able to anticipate the outcome. Hence, the outcome must be
incorporated in each association. Therefore, objective 2 is necessary in order to derive
outcome values. Objective 3 has redefined the state signal as a compound of stimuli,
each of which can enter into separate associations with the outcome. This is actually
the core of the generalization framework, and is related with objective 4. Because the
agent now derives outcome values on its own, on the basis of sensorial and motiva-
tional elements of stimuli compounds and the provision of internal drives, a burden is
removed from the environment designer of defining rewards. Consider the complexity
of having to define separate rewards for each stimulus of a compound. Thus, because
the agent itself derives outcome values, it will analyze the stimuli compound in order
to differentiate what is aversive/appetitive in the compound, and thereby form separate
associations for each stimulus of the compound. Finally, objective 5 is a necessary
modification to the error correction rule, which allows each stimulus of a compound
to enter into separate associations; the [Rescorla & Wagner 1972] equation. It is be-
cause of these separate associations that the ARL agent is able to generalize when
one stimulus of a compound is changed and one stimulus is not, from one situation to
another. The agent will then be able to use the remaining association to signal the op-
timal response. It can therefore be concluded that the implemented objectives provide
a sufficient framework for generalization.
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Chapter 6

Evaluation and Conclusions

6.1 Conclusion
The aim of this project was to improve Q-learning, by developing a synthesis between
associative learning theory from Psychology and reinforcement learning. This aim was
manifested in the objectives of this project. To see whether this have been achieved,
the motivation behind the project needs to be revisited. Four problems were identified
with the Q-learning framework:

1. Exploration-exploitation equilibrium: The agent has to explore the environ-
ment in order to find the true value of a policy, which is necessary for policy
improvement. Hence, to be certain that the optimal policy has been found, its
true value has to be known. The problem is that the agent does not know when
to stop exploring, because it does not know if all states have been visited.

2. Temporal discounting: The agent needs to maintain a balance between imme-
diate greediness and long-term reward maximization. This is done by providing
a discount factor γ. Consequently, the problem is according to [Alonso & Mon-
dragón 2005], that a small discount factor may result in sub-optimal policies
because the algorithm may converge prematurely to a sub-optimal goal. On the
other hand, a large discount factor will slow down learning, because the agent
has to visit more states to find the optimal policy.

3. Generalization: Because the Q-learning algorithm considers states as irreducible
entities, it cannot retain reward prediction from one state to another even though
they share common features. Consequently, even the slightest change in the en-
vironment will cause a complete loss of policy value for the affected states. The
affected q-values will then need to be relearned, something which affects other
unchanged states as well as the error propagates.

4. Large sized problems: Relying upon irreducible state descriptions and correct
reward prediction (i.e. policy value), the Q-learning algorithm cannot success-
fully reuse q-values from a small learning environment to a larger environment.
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When the problem increases in size, the Q-learner has to relearn the policy value.
Additionally, similar states may reoccur from time to time in larger problems.
This is something that Q-learning cannot exploit. Therefore, for large sized prob-
lems, learning will take even longer time.

The above problems can now be discussed in relation with the objectives and with
regards to the research questions, to conclude the findings of this project:

1. Exploration-exploitation equilibrium: By considering exploration as a drive,
S-S associations will form, allowing the agent to form a model of the environ-
ment, which in turn will help to discard unsuccessful exploratory policies.

2. Temporal discounting: Factors other than the immediate temporal contiguity
between events or actions and their outcomes are integrated in the learning struc-
ture, and modulate the absolute value of the reinforcers.

3. Generalization: Associative theory treats stimuli as compounds of elements,
each of which has an associative strength. It follows that two stimuli compounds
which share some of these elements thus share some of their associative strength.
Generalization follows directly from this analysis.

4. Large sized problems: All the factors included in the structure of learning will
reduce the processing required. Based on stimulus generalization, new and larger
environments will share elements and relationships with smaller ones, facilitat-
ing learning and reducing computational complexity.

The problems of exploration-exploitation equilibrium and temporal discounting are
closely related. Because the idea of rewards have been abandoned in the proposed
learning framework of this project, the temporal reward discounting has a slightly dif-
ferent function than when rewards are considered. The ARL learning framework does
not choose responses on the basis of reward maximization, but reward (appetitive) ex-
pectance; the greedy response is the one signalling a stimulus (or stimuli compound)
with the maximum appetitive reward expectance, for any situation. As shown in the
previous chapter, the reward expectance decreases exponentially with the decay pa-
rameter δ, which is equivalent to the reward discount parameter γ of Q-learning, the
further away from the goal the agent is. Hence, because there are no rewards, the re-
ward expectance is dependent on this exponential decrease in value in order to choose
the best response. For a decay parameter of 1 all associations would eventually reach
the asymptotic value of the appetitive goal stimulus. Therefore, the actual value of the
decay parameter does not matter as long as it is in the range 〈0, 1〉1. According to re-
search question 1, it was assumed that by allowing the agent to form S→S-associations
(the associative memory), and implementing exploration as a drive, the agent would
form a causal model of the environment which would help avoid unsuccessful ex-
ploratory policies. The objective of introducing drives has been met, but exploration
has not been implemented as a specific drive. The ARL learning framework uses an
ε-greedy exploration policy like Q-learning. Furthermore, the agent does learn a causal

1This preposition can only be claimed to be true for the experiments of this project.
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model of the environment, the associative memory, but at the same pace as the be-
havioral reward expectance model (the expectance memory; S→(R→O)-associations).
The S→S-associations therefore evolve in the exact same way as the expectance mem-
ory, and hence does not provide any additional information to the agent which could
reduce its uncertainty regarding unsuccessful exploratory responses. Finally, because
the optimal policy still assumes the provision of its true value, for the ARL learning
framework, the problem of exploration-exploitation equilibrium remains. Regarding
research question 2, it has been shown that the ARL learning framework relies on an
exponential decrease in reward expectance, as do Q-learning, to facilitate second-order
conditioning. Therefore, it can be said that the factor included in the learning structure,
the decay parameter δ, as a modification to the [Rescorla & Wagner 1972] equation,
does modulate the absolute value of the final reinforcer (the goal stimulus) beyond
the level of first-order conditioning. This, however, results in an error correction rule
which is functionally equivalent to the Q-value error correction rule (under the given
experiment conditions). To conclude, the problem of reward discounting also remains.

The contribution of this project is manifested in the way the ARL learning frame-
work facilitates generalization. By considering states as stimuli compounds (i.e. re-
ducible entitities), and modifying the error correction rule to allow for separate asso-
ciations to form between each stimulus element of a compound and the elements of
another compound, a savings effect can be achieved. When the environment is only
slightly changed, as in the generalization experiments, from one learning phase to the
next, the agent is able to utilize the associations of the remaining stimuli in the changed
compounds, so that the policy remains, but loses some of its value (half its value for
the modified compounds). Because the policy remains intact, but slightly devalued, the
ARL agent can see that there is only a slight change in the environment, as opposed
to Q-learning which regards the slight change as complete loss of policy value for the
affected states (stimuli compounds). Consequently, the ARL algorithm only has to cor-
rect the error of the slightly devalued policy, whereas the Q-learning algorithm has to
relearn the policy and its value for the affected states. Conclusively, research question 3
correctly assumes that by considering states as reducible entitities to allow for sharing
of associative strength between similar states, generalization can be achieved.

Regarding large sized problems, it was shown that ARL lookahead was able to
generalize for Grid world configurations of size 3x3, 5x5, and 10x10. However, the
savings effect decreased as the environment complexity increased. For the 10x10 Grid
world experiment the slight change in the environment did reduce the optimality of
the policy for a longer time than for the generalization experiments involving smaller
grid world layouts. Additionally, because none of the experiments have employed
redundancy in the environment (i.e. all compounds have been unique), it is not clear
whether the repetition of associations across spatial locations would have resulted in
an increase in convergence speed. Most likely, this would have violated the Markov
assumption, so that the algorithm would have never converged. It has not been tested
whether learning can be transferred from a small environment to a larger environment
along the lines of the generelization experiments. A complete answer can therefore
not be given to research question 4. The only conclusion to be drawn is that the ARL
learning framework is able to generalize even as the complexity of the environment
increases and more is changed (as in generalization experiment 4).
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Finally, it shall be stressed that there is no point in using the ARL learning frame-
work when states are irreducible entities by definition, as in the convergence experi-
ments (i.e. only one stimulus per spatial location). For such cases the added complexity
of the ARL framework only results in increased algorithm running time. Because, as
have been shown in the previous chapter, Q-learning and ARL lookahead are equiva-
lent for these cases, Q-learning should be the preferred algorithm as it does the exact
same thing, but faster due to its simple definition and provision of rewards from the
environment.

6.2 Evaluation
The project has been undertaken following a general development approach; require-
ments gathering, analysis, design, implementation and test (experiments). Require-
ments were gathered in parallel with the literature review. During this period, regular
meetings were held with the project supervisor and an expert on animal learning, Dr.
Esther Mondragón, at University College London. The purpose of these meetings was
to suggest reading material for the literature review, and also explain concepts that were
poorly understood. The first portion of the project work therefore centered around the
student reading about theories from animal learning to see how these could be com-
bined with reinforcement learning, and fit with the objectives of the project. It shall be
stressed that animal learning theories and reinforcement learning, have different aims
as to the usage of their respective models. Whereas the animal learning community
provide descriptive and predictive accounts of animal learning and behavior, reinforce-
ment learning aims to develop prescriptive computational model that can solve the rein-
forcement learning problem (reward maximization). The latter is therefore much more
detailed in terms of algorithmic specifications and detailed mathematical notation. Ani-
mal learning theories, on the other hand, provide more general descriptions and models
that fit statistical data from observations of animal learning and behavior. Not neces-
sarily because of this, but animal learning theories are not very concerned with reward
maximization and process control in the way reinforcement learning is. It has therefore
been quite problematic to understand how the Q-learning framework could be com-
bined with animal learning theories. The solution, however, was to maintain the notion
of reward maximization (actually changed slightly to reward expectance), whereby the
Q-learning algorithm could be retained as a functional framework.

A great deal of time has been spent trying to understand the implications of gener-
alization. During the course of this confusion, it was thought that generalization meant
transfer of associative strength to similar stimuli. This is why the similarity function
was defined. However, as the algorithm design began to take shape, it became evident
that transfer of associative strength to similar stimuli is pointless for the purposes of
this project. Generalization simply means that two stimuli compounds have common
stimulus elements.

The experimental design and testing phase of the project carried with it some con-
fusion. Particularly the generalization experiments, which have been designed in the
general case by the animal learning expert, lead to some misunderstandings for the
student. It was believed that the different phases of these experiments involved more
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changes to the grid world than was actually the case. Therefore, some time was spent
and lost on running erronous experiments which did not prove anything either way.

It is worth noting what could have been done differently or extended given more
time:

• More specific objectives. This would have allowed more time for experimental
design and statistical analysis. However, as the project implied a fairly new angle
of research the objectives needed to be quite open, in order not to bias the results.

• Experimental design patterns from Psychology could have been employed. Psy-
chology have a long tradition of defining experiments which produce results
prompt to statistical analysis.

• Given more time, the actual experiments should have been run for many more
repetitions, to minimize the likelihood of statistical errors.

• More rigorous analysis of results, together with formal mathematical proof of
convergence and generalization.

6.3 Future work
Although a sound basis for future work has been proposed and implemented during the
course of this project, this thesis has only scratched the surface of what is possible, in
terms of possible syntheses between reinforcement learning and associative learning
from Psychology. In the future it would be interesting to investigate the following:

• Dynamic learning rates: According to associative learning theory the learning
rates of the [Rescorla & Wagner 1972] equation are not constant. Section 3.1.3
discusses this briefly, and proposes one possible but very incomplete design. This
proposal has not been implemented in the learning framework. It is believed
that dynamic learning rates can have a positive effect on the existing solution
for generalization. When a policy loses half its value, but is still correct, the
algorithm should notice that the policy should regain its value more rapidly than
is the case now. The component responsible for this would most likely need
some record of policy cost, in order to differentiate a regular policy value error,
and one due to generalization.

• Configural and elemental associations: In order to solve the XOR problem,
the current elemental associative needs to be extended with additional configural
units. It is problematic, however, to know when the configural unit applies and
when the compound elemental associative strength applies.

• Sparse associative memory instead of dense lookup-table: The current im-
plementation uses a dense lookup table to store associative strength. Therefore it
requires as much memory as the number of possible associations. An association
which does not yet exist simply has a value of 0. This kind of memory is very
fast for error correction, but slow for response selection (the algorithm needs to
loop through many possible associations to find the one with maximum reward
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expectance). A sparse memory, which only stores values for associations that ac-
tually exist in the environment, is much more efficient during response selection,
which is believed to be the main speed bottleneck.

• Combining the causal model and the instrumental memory: An investigation
into the effects of combining the associative memory and the expectance memory
for generalization is needed. Also, the causal model should be taken advantage of
in order to signal unsuccessful exploratory policies. For this to work, however,
the causal model (associative memory) would need to gain policy value faster
than the instrumental expectance memory.

• New experiments: Many new experiments are needed. Specifically the algo-
rithm needs to be tested in environments involving extinction, obstacles, differ-
ent environment complexity, more than one appetitive stimulus. It is likely that
animal learning phenomena can yield new and better insights into solutions to
the problems of exploration-exploitation equilibrium, reward discounting, gen-
eralization, than those which have been found during this project.
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A.1 Aim
The aim of this project is to develop an improved Q-learning algorithm by incorpo-
rating principles from modern associative models of learning from psychology and
cognition. In order to answer to this aim the following main objectives have been
identified:

1. To integrate reinforcement learning models from machine learning with psycho-
logical theories of Pavlovian and instrumental learning.

2. To design, build and implement a new Q-learning algorithm accordingly.

3. To evaluate the algorithm in different experimental settings against well-established
reinforcement learning techniques.

A.2 Background
[Sutton & Barto 1998] define the reinforcement learning problem as consisting of an
agent situated in an environment, where the agent performs actions in specific states
with the aim of reaching some goal. The environment presents a reward and a new state
to the agent after the agent has performed an action. Rewards can be any real num-
ber. The goal of reinforcement learning is to maximize the reward signal over time.
Several techniques have been used to solve the reinforcement learning problem: Dy-
namic programming, Monte Carlo methods, and temporal-difference learning [Sutton
& Barto 1998]. These techniques differ mainly in two dimensions; whether they work
with a model of the dynamics of the environment; and whether or not they bootstrap,
that is, compute state-action value estimates based on successor estimates. The project
will focus on an instance of temporal difference learning called Q-learning. Despite
their popularity, several difficulties have prohibited the application of the techniques to
large problems [Alonso & Mondragón 2005]:

1. Finding the right balance between exploration and exploitation. How to search
for the optimal policy.

2. Temporal discounting: Modelling long-term goals versus short-term goals through
use of reward discounting.

3. Generalisation: Learning is dependent on the reward structure, and so therefore
the learning has to start over when presented with a new problem.

4. Large sized problems: Convergence is prohibited by large state spaces, due to
the requirement of repetitive visits to all states.

According to [Alonso & Mondragón 2004] reinforcement learning models are based on
outdated principles, specifically Thorndikes Law of Effect [Thorndike 1911]. This law
states that an association between a stimuli (state) and a response (action) are strength-
ened when a reinforcing outcome (reward) succeeds. It has been established exper-
imentally that rewards are not essential for learning, and so the reinforcement learn-
ing models are incomplete or even wrong. Also it has been called for, in [Kaelbling

136



et al. 1996], that new bias should be incorporated into the reinforcement learning
model.

A.3 Objectives
It is hypothesized in [Alonso & Mondragón 2005] that existing reinforcement learning
models and algorithms can be improved upon by incorporating the associative princi-
ples currently used to explain trial and error learning in animals. This hypothesis will
be made testable, and the aim will possibly be met, by implementing the following
sub-objectives [Alonso & Mondragón 2005]:

1. To incorporate psychological bias in the architecture of the agents that will guide
their learning. Internal drives will be introduced, that will make the agent ap-
proach appetitive stimuli and avoid aversive stimuli.

2. To endow agents with the ability to form types of association other than S-R
associations. Associative theory envisages three types of association:

• Stimulus-Response (S-R) associations

• Stimulus-Stimulus (S-S) association.

• Response-Outcome (R-O) associations

3. To take into account associative theorys conception of event (state) representa-
tion.

4. To redefine outcomes as comprising sensorial and motivational elements.

5. To take into account the fundamental conditions of association formation pro-
posed by associative theory.

It is contended that achieving these sub-objectives will help solve the problems de-
scribed in A.2. The research questions are thus specified in light of the identified prob-
lems with reinforcement learning techniques:

1. Exploration-exploitation equilibrium: By considering exploration as a drive, S-S
associations will form, allowing the agent to form a model of the environment,
which in turn will help to discard unsuccessful exploratory policies.

2. Temporal discounting: Factors other than the immediate temporal contiguity be-
tween events or actions and their outcomes are integrated in the learning struc-
ture, and modulate the absolute value of the reinforcers.

3. Generalization: Associative theory treats stimuli as compounds of elements,
each of which has an associative strength. It follows that two stimuli which
share some of these elements thus share some of their associative strength. Gen-
eralization follows directly from this analysis.

137



4. Large sized problems: All the factors included in the structure of learning will
reduce the processing required. Based on stimulus generalization, new and larger
environments will share elements and relationships with smaller ones, facilitat-
ing learning and reducing computational complexity.

A.4 Tools
Grid-world will be used as the testing environment for the algorithm. The Grid-world
consists of a grid of squares through which a robot may navigate its way to a goal
state while avoiding obstacles on its way. Grid-world presents many advantages when
designing and testing reinforcement learning techniques:

1. It is standard. The aim of the project is not to develop a new environment.

2. It has been extensively used for the evaluation of various reinforcement learning
techniques, thereby facilitating comparison with existing algorithms.

3. It is simple, and can be changed in many ways to represent different experimental
conditions.

4. It can be easily extended so as to add the new elements and types of association
described in the previous section.

A.5 Method

A.5.1 Evaluation of the algorithm
The resulting algorithm will be tested and evaluated against different well-established
reinforcement learning techniques in scenarios of various degrees of complexity. Mea-
suring learning performance will be carried out according to the following parameters:

1. Eventual convergence to optimality (that is, provable guarantee of asymptotic
convergence to optimal behavior).

2. Speed of convergence to optimality and level of performance after a given time.

3. Regret, the difference between the expected total reward gained by following a
learning algorithm and the expected total reward one could gain by playing for
the maximum expected reward from the start.

4. Generalization. Assessment will be carried out on how experience with a limited
subset of the state space can be usefully generalized to produce a good approxi-
mation over a much larger subset.
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A.5.2 Methodology
The development of the learning model and algorithm will be managed by the Unified
Software Development Process, a methodology that emphasizes a recursive develop-
ment process in which, after every stage, a new recursion of the system life cycle is
performed. This will, in turn, be used to refine assumptions and reduce the risk that
the analysis and design stages have been carried out incorrectly. The project will in-

Figure A.1: The Unified Software Development Process

volve collaboration with psychologists from the University College London and the
University of York. This interaction will persist throughout each stage of the project.
A reinforcement learning model based on animal-learning theories will be built in con-
sultation with psychologists; following such a model, an algorithm will be produced
along with an experimental scenario to test the model. The resulting algorithm will be
thoroughly tested in several settings using the Grid-world. The parameters to be used
in each case will make explicit reference to existing reinforcement learning algorithms
so that comparisons are relevant and the results prompt to experimental analysis.

A.6 Project beneficiaries
The main beneficiaries will be systems engineers and computer scientists with interests
in developing adaptive software. In particular, it will benefit Artificial intelligence and
machine learning researchers. Due to the interdisciplinary nature of this project, the
results will also benefit neuroscientists and psychologists. First, it will provide a tool
for behavioral researchers to apply to associative and instrumental models to solve
computational problems. Second, improved models of reinforcement learning may, in
turn, be used to solve optimization problems.

A.7 Project feasibility

A.7.1 Student ability
• The student has documented knowledge on AI techniques, both from under-

graduate and postgraduate studies. He has previously implemented several rein-
forcement learning algorithms, including Q-learning, Sarsa, Dyna-Q, Q-learning
with Function Approximation (FA), in an environment with a large state space
(Minesweeper), and is therefore aware of the limitations and problems with re-
inforcement learning techniques.

• Knowledge of associative learning models from psychology is not required. The
project will be undertaken in collaboration (although limited) with psychologists
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from University College London and the University of York, and hence expertise
will be provided where necessary.

A.7.2 Project risks
• Lack of commitment from collaborators: A previous project have been under-

taken successfully by a student in the department, in collaboration with the psy-
chologists, and so there is evidence of past enthusiasm and willingness to provide
expertise. Also it is in the interest of the psychologists to see practical implemen-
tations of their theories.

• Not understanding theory: As stated earlier the development of the model will
progress iteratively. If parts of the theory are not well understood, it will be
necessary to revisit and revise earlier stages of the process so as to make sure the
requirements and analysis have been specified unambiguously.

• Flawed experimental design: Testing and analysis of results compose an impor-
tant aspect of the project. Given that the objectives have been met, it is paramount
to perform extensive testing of the algorithm so that the research questions can be
answered and objectives confirmed. As described below a considerable amount
of time will be spent on design of testing scenarios and procedures.

A.8 Work plan
This project has several deliverables, the most important one being the Project Report
document. The main deliverables resulting from the project work are related to the new
reinforcement learning model and algorithm:

Work-package I (Weeks 1-3). To underpin the research with a sound theoretical
framework. This will take into account both associative and instrumental learning and
reinforcement learning.
Deliverable I.1. Reinforcement learning model.

Work-package II (Weeks 3-7). Development of the algorithm and the basic infras-
tructure components of a test-bed. This test-bed will be used to evaluate the model
from Work-package I.
Deliverable II.1. Reinforcement learning algorithm.
Deliverable II.2. Demonstration scenarios and evaluation procedures.

Work-package III (Weeks 7-10). Testing and evaluation of the algorithm will then
proceed following the procedures devised during work-package II.
Deliverable III.1. Results from testing.
Deliverable III.2. Evaluation of results.
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Project Report Document (PRD) (Weeks 1-12). The project report shall introduce
the reader to the research, explain the current state of the topic, report the work being
done, present results and evaluations of the work. It will be written during the course
of the project work.
Deliverable PRD.1 The literature survey will be undertaken during work package I.
Deliverable PRD.2 Methods and results will be documented during work packages II
and III.
Deliverable PRD.3 Discussion, evaluation and conclusion; to be written at end of
project after actual project work is finalized.
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Figure A.2: Work schedule
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Appendix B

Source code

Listing B.1: Java code listing for ARL Agent¨ ¥
/∗
∗ An i m p l e m e n t a t i o n o f t h e ARL Trace and ARL lookahead a l g o r i t h m s
∗ N i c l a s K j a l l−Ohlsson , c o p y r i g h t 2005
∗/

p u b l i c c l a s s ARLAgent implements Agent {

p r i v a t e i n t i d ;

p r i v a t e double StdDev = 0 . 1 ; / / s i m i l a r i t y f u n c t i o n s e n s i t i v i t y

p r i v a t e double max alpha = 0 . 5 ; / / CS s p e c i f i c l e a r n i n g r a t e
p r i v a t e double max be ta = 0 . 5 ; / / US s p e c i f i c l e a r n i n g r a t e

p r i v a t e double e p s i l o n = 0 . 8 ; / / e x p l o r a t i o n parame te r

p r i v a t e double s i m i l a r i t y t h r e s h o l d = 0 . 8 5 ; / / ARL t r a c e s p e c i f i c parame te r

p r i v a t e double decay = 0 . 9 ; / / Decay o f f i r s t−o r d e r a s y m p t o t e t o f a c i l i t a t e second−o r d e r c o n d i t i o n i n g

p u b l i c j a v a . u t i l . V e c t o r u n c o n d i t i o n e d s t i m u l i ; / / i n t e r n a l d r i v e s

p r i v a t e S i m u l a t o r env ; / / t h e g r i d wor ld e n v i r o n m e n t ha nd l e

p r i v a t e j a v a . u t i l . V ec to r s t i m u l i ; / / c u r r e n t l y p e r c e i v e d s t i m u l i compound

p r i v a t e i n t p r e v i o u s r e s p o n s e ; / / p r e v i o u s r e s p o n s e : ARL t r a c e s p e c i f i c
p r i v a t e j a v a . u t i l . V ec to r p r e v i o u s s t i m u l i ; / / p r e v i o u s s t i m u l i compound : ARL t r a c e s p e c i f i c

/ / Dense A s s o c i a t i v e memory
/ / S t i m u l u s−S t i m u l u s a s s o c i a t i o n
/ / I n d i c e s : [CS . m o d a l i t y ] [ US . m o d a l i t y ] [ CS . s t r e n g t h ] [ US . s t r e n g t h ]
p r i v a t e double a s s o c i a t i v e m e m o r y [ ] [ ] [ ] [ ] ;

/ / Response s t i m u l u s v a l u e s . NOT IN USE ! ! ! ! !
p r i v a t e double expec tance memory [ ] [ ] [ ] ; / / o b s o l e t e

/ / Dense E x p e c t a n c e memory
/ / S t i m u l u s−(Response−Outcome)−a s s o c i a t i o n s
/ / I n d i c e s : [CS . m o d a l i t y ] [ CS . s t r e n g t h ] [ Response ] [ US . m o d a l i t y ] [ US . s t r e n g t h ]
p r i v a t e double h i e r a r c h i c a l m e m o r y [ ] [ ] [ ] [ ] [ ] ;

p u b l i c double a v g e r r o r = 0 ; / / a g g r e g a t e a b s o l u t e e r r o r o f a s s o c i a t i v e memory per e p i s o d e
p u b l i c double a v g e r r o r e x p e c t a n c e = 0 ; / / a g g r e g a t e a b s o l u t e e r r o r o f e x p e c t a n c e memory per e p i s o d e
p u b l i c long e p i s o d e s t e p = 0 ; / /

p u b l i c boolean l e a r n i n g = t rue ; / / up da t e memories or n o t

/ / i f t r u e : t h e n t h e a s s o c i a t i v e memory and t h e e x p e c t a n c e memory are
/ / combined d u r i n g r e s p o n s e s e l e c t i o n
p u b l i c boolean combineMemories = f a l s e ;

/ / 0 : ARL lookahead
/ / 1 : ARL t r a c e
p u b l i c i n t v e r s i o n = 0 ;

/ / epoch c o u n t e r
p r i v a t e long epochs = −1;
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p r i v a t e double max ou tcome va lue ; / / f o r v i s u a l i z a t i o n p u r p o s e s

/∗∗ C r e a t e s a new i n s t a n c e o f ARLAgent ∗/
p u b l i c ARLAgent ( S i m u l a t o r env , i n t i d ) {

t h i s . u n c o n d i t i o n e d s t i m u l i = new j a v a . u t i l . V e c t o r ( ) ;
t h i s . i d = i d ;
t h i s . env = env ;
in i tAgentMemory ( ) ;

}

p u b l i c vo id r e s e t I n t e r n a l D r i v e s ( ) {
t h i s . u n c o n d i t i o n e d s t i m u l i = new j a v a . u t i l . V e c t o r ( ) ;

}

p u b l i c vo id in i tAgentMemory ( ) {
/ / r e s e t a s s o c i a t i v e memory
a s s o c i a t i v e m e m o r y = new double [ env . ge tNumModa l i t i e s ( ) ] [ env . ge tNumModa l i t i e s ( ) ]

[ env . ge tNumSt r eng th s ( ) ] [ env . ge tNumSt r eng th s ( ) ] ;
expec tance memory = new double [ env . getNumAct ions ( ) ] [ env . ge tNumModa l i t i e s ( ) ]

[ env . ge tNumSt r eng th s ( ) ] ; / / o b s o l e t e
/ / r e s e t e x p e c t a n c e memory
h i e r a r c h i c a l m e m o r y = new double [ env . ge tNumModa l i t i e s ( ) ] [ env . ge tNumSt r eng th s ( ) ] [ env . getNumAct ions ( ) ]

[ env . ge tNumModa l i t i e s ( ) ] [ env . ge tNumSt r eng th s ( ) ] ;
epochs = −1;

}

p u b l i c i n t ge t ID ( ) {
re turn i d ;

}

p u b l i c vo id s e t S t d D e v ( double v a r ) {
t h i s . StdDev = v a r ;

}

p u b l i c double ge tS tdDev ( ) {
re turn t h i s . StdDev ;

}

p u b l i c double getMaxAlpha ( ) {
re turn max alpha ;

}

p u b l i c double getMaxBeta ( ) {
re turn max be ta ;

}

p u b l i c double g e t E p s i l o n ( ) {
re turn e p s i l o n ;

}

p u b l i c double g e t S i m i l a r i t y T h r e s h o l d ( ) {
re turn t h i s . s i m i l a r i t y t h r e s h o l d ;

}

p u b l i c double ge tDecay ( ) {
re turn decay ;

}

p u b l i c vo id setMaxAlpha ( double a l p h a ) {
t h i s . max a lpha = a l p h a ;

}

p u b l i c vo id se tMaxBeta ( double b e t a ) {
t h i s . max be ta = b e t a ;

}

p u b l i c vo id s e t E p s i l o n ( double e p s i l o n ) {
t h i s . e p s i l o n = e p s i l o n ;

}

p u b l i c vo id s e t S i m i l a r i t y T h r e s h o l d ( double s i m t ) {
t h i s . s i m i l a r i t y t h r e s h o l d = s i m t ;

}

p u b l i c vo id s e t D e c a y ( double decay ) {
t h i s . decay = decay ;

}

p u b l i c vo id s e t L e a r n i n g ( boolean l e a r n i n g ) {
t h i s . l e a r n i n g = l e a r n i n g ;

}

p u b l i c boolean getCombineMemories ( ) {
re turn t h i s . combineMemories ;

}

p u b l i c vo id setCombineMemories ( boolean cm) {
t h i s . combineMemories = cm ;

}

p u b l i c i n t g e t V e r s i o n ( ) {
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re turn v e r s i o n ;
}

p u b l i c vo id s e t V e r s i o n ( i n t v e r s i o n ) {
t h i s . v e r s i o n = v e r s i o n ;

}

/ / i n i t i a l i z e a g e n t e p i s o d e
p u b l i c vo id i n i t E p i s o d e ( ) {

s t i m u l i = env . ge tS t imul iCompound ( i d ) ;
p r e v i o u s r e s p o n s e = −1;
p r e v i o u s s t i m u l i = n u l l ;
e p i s o d e s t e p = 0 ;
a v g e r r o r = 0 ;
a v g e r r o r e x p e c t a n c e = 0 ;
epochs ++;

}

/∗
∗ T h i s method i s c a l l e d by t h e e n v i r o n m e n t
∗ f o r each s t e p o f t h e e p i s o d e . T h i s i s t h e f u n c t i o n a l p a r t o f t h e
∗ ARL a g e n t .
∗/

p u b l i c vo id doStep ( ) {
i f ( v e r s i o n == 0) d o S t e p l o o k a h e a d ( ) ;
e l s e i f ( v e r s i o n == 1) d o S t e p t r a c e ( ) ;

}

/∗
∗ Perform one e p i s o d e s t e p and u pd a t e a s s o c i a t i v e memory and
∗ e x p e c t a n c e memory a c c o r d i n g t o t h e ARL lookahead a l g o r i t h m
∗/

p u b l i c vo id d o S t e p l o o k a h e a d ( ) {
i n t r e s p o n s e ;
j a v a . u t i l . Ve c t o r n e x t S t i m u l i ;

s t i m u l i = env . ge tS t imul iCompound ( i d ) ; / / p e r c e i v e c u r r e n t s t i m u l i compound
r e s p o n s e = chooseResponse ( s t i m u l i , t rue ) ; / / s e l e c t r e s p o n s e a c c o r d i n g t o e p s i l o n−gr ee d y e x p l o r a t i o n p o l i c y
/ / pe r fo rm r e s p o n s e i n e n v i r o n m e n t
env . doAc t ion ( r e s p o n s e , i d ) ;
/ / o b s e r v e n e x t s t i m u l i compound
n e x t S t i m u l i = env . ge tS t imul iCompound ( i d ) ;

i n t n u m e r r o r s = 0 ;
i n t n u m e r r o r s e x p e c t a n c e = 0 ;

double a s s o c s t r e n g t h = 0 , e r r o r = 0 , s i m u s = 0 ;
double o l d v a l u e = 0 ;
double a l p h a = 0 . 0 , b e t a = 0 . 0 ;
S t i m u l u s s t 1 , s t 2 ;
double o l d v a l ;
double s e c o n d o r d e r a s s o c , s e c o n d o r d e r e x p e c t a n c e ;

/ / r e t r i e v e maximum a s s o c i a t i v e s t r e n g t h f o r n e x t s t i m u l i compound
s e c o n d o r d e r a s s o c = t h i s . g e tSeconda ryAssocS t r eng thComp ( n e x t S t i m u l i ) ;
/ / r e f i n e a s s o c i a t i v e model ( S−S ) f o r f i r s t−o r d e r c o n d i t i o n i n g
f o r ( i n t i =0 ; i<n e x t S t i m u l i . s i z e ( ) ; i ++) {

a s s o c s t r e n g t h = 0 ;
s t 2 = ( S t i m u l u s ) n e x t S t i m u l i . g e t ( i ) ;
b e t a = max be ta ;
/ / a c c u m u l a t e t o t a l a s s o c i a t i v e s t r e n g t h o f compound
f o r ( i n t j =0 ; j<s t i m u l i . s i z e ( ) ; j ++) {

s t 1 = ( S t i m u l u s ) s t i m u l i . g e t ( j ) ;
a s s o c s t r e n g t h += a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
}

s i m u s = compStimUS ( s t 2 , f a l s e ) ;
/ / lambda = s i m i l a r i t y t o US + s e c o n d a r y a s s o c i a t i v e s t r e n g t h o f p r e c e d i n g s t i m u l u s
e r r o r = ( s i m u s + decay∗s e c o n d o r d e r a s s o c − a s s o c s t r e n g t h ) ;

/ / upd a t e t h e a s s o c i a t i v e s t r e n g t h o f each s t i m u l u s a c c o r d i n g t o t h e Rescor la−Wagner r u l e
f o r ( i n t j =0 ; j<s t i m u l i . s i z e ( ) ; j ++) {

s t 1 = ( S t i m u l u s ) s t i m u l i . g e t ( j ) ;
a l p h a = max a lpha ;
o l d v a l = a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ]
+= a l p h a∗b e t a∗e r r o r∗( s t i m u l i . e q u a l s ( n e x t S t i m u l i ) ? 0 : 1 ) ;

a v g e r r o r += j a v a . l a n g . Math . abs ( o l d v a l−a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]
[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ) ;

n u m e r r o r s ++;
}

}

/ / second−o r d e r reward e x p e c t a n c e f o r e x p e c t a n c e memory
s e c o n d o r d e r e x p e c t a n c e = t h i s . ge tSecondaryExpec tanceComp ( n e x t S t i m u l i ) ;

145



/ / u pda t e t h e e x p e c t a n c e memory
f o r ( i n t i =0 ; i<n e x t S t i m u l i . s i z e ( ) ; i ++) {

s t 2 = ( S t i m u l u s ) n e x t S t i m u l i . g e t ( i ) ;
/ / f i r s t−o r d e r and second−o r d e r c o n d i t i o n i n g i n one
s i m u s = compStimUS ( s t 2 , t rue )+ decay∗s e c o n d o r d e r e x p e c t a n c e ;

a l p h a = max a lpha ;
b e t a = max be ta ;
a s s o c s t r e n g t h = 0 ;

/ / a c c u m u l a t e reward e x p e c t a n c e f o r compound
f o r ( i n t h =0; h<s t i m u l i . s i z e ( ) ; h ++) {

s t 1 = ( S t i m u l u s ) s t i m u l i . g e t ( h ) ;
a s s o c s t r e n g t h += h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ] [ r e s p o n s e ]

[ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
}

/ / upd a t e e x p e c t a n c e memory
f o r ( i n t h =0; h<s t i m u l i . s i z e ( ) ; h ++) {

s t 1 = ( S t i m u l u s ) s t i m u l i . g e t ( h ) ;
e r r o r = s im us−a s s o c s t r e n g t h ; / / Re scor la−Wagner e r r o r

n u m e r r o r s e x p e c t a n c e ++;
o l d v a l = h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ] [ r e s p o n s e ]

[ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ] [ r e s p o n s e ]

[ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ]
+= a l p h a∗b e t a∗e r r o r∗( s t i m u l i . e q u a l s ( n e x t S t i m u l i ) ? 0 : 1 ) ; / / M o d i f i e d Rescor la−Wagner

/ / e r r o r c o r r e c t i o n r u l e
a v g e r r o r e x p e c t a n c e += j a v a . l a n g . Math . abs ( o l d v a l − h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ r e s p o n s e ]
[ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ) ;

}
}

i f ( n u m e r r o r s > 1) a v g e r r o r /= n u m e r r o r s ;
i f ( n u m e r r o r s e x p e c t a n c e > 1) a v g e r r o r e x p e c t a n c e /= n u m e r r o r s e x p e c t a n c e ;
e p i s o d e s t e p ++;

}

/∗
∗ Perform one e p i s o d e s t e p and u pd a t e a s s o c i a t i v e memory and
∗ e x p e c t a n c e memory a c c o r d i n g t o t h e ARL t r a c e a l g o r i t h m
∗/

p u b l i c vo id d o S t e p t r a c e ( ) {
i n t r e s p o n s e ;
j a v a . u t i l . Ve c t o r n e x t S t i m u l i ;

s t i m u l i = env . ge tS t imul iCompound ( i d ) ; / / p e r c e i v e c u r r e n t s t i m u l i compound
r e s p o n s e = chooseResponse ( s t i m u l i , t rue ) ; / / choose r e s p o n s e a c c o r d i n g t o e p s i l o n−gr ee d y p o l i c y
env . doAc t ion ( r e s p o n s e , i d ) ; / / pe r fo rm r e s p o n s e i n t h e e n v i r o n m e n t
n e x t S t i m u l i = env . ge tS t imul iCompound ( i d ) ; / / o b s e r v e n e x t s t i m u l i compound

/ / number o f u p d a t e s i n a s s o c i a t i o n s
/ / f o r a s s o c i a t i v e memory and e x p e c t a n c e memory
i n t n u m e r r o r s = 0 , n u m e r r o r s e x p e c t a n c e = 0 ;

double a s s o c s t r e n g t h = 0 , s e c o n d a r y a s s o c s t r e n g t h = 0 , e r r o r = 0 , s i m u s = 0 ;
double m a x a s s o c s t r e n g t h = Double . MIN VALUE, o l d v a l u e = 0 ;
double a l p h a = 0 . 0 , b e t a = 0 . 0 ;
double o l d v a l = 0 ;
S t i m u l u s s t 1 , s t 2 ; / / CS , US

/ / r e f i n e a s s o c i a t i v e model ( S−S ) f o r f i r s t−o r d e r c o n d i t i o n i n g
/ / Each s t i m u l u s o f t h e c u r r e n t compound e n t e r s i n t o an a s s o c i a t i o n w i t h
/ / each s t i m u l u s o f t h e n e x t compound
f o r ( i n t i =0 ; i<n e x t S t i m u l i . s i z e ( ) ; i ++) {

s t 2 = ( S t i m u l u s ) n e x t S t i m u l i . g e t ( i ) ;
b e t a = max be ta ;

/ / a c c u m u l a t e t o t a l a s s o c i a t i v e s t r e n g t h o f compound
f o r ( i n t j =0 ; j<s t i m u l i . s i z e ( ) ; j ++) {

s t 1 = ( S t i m u l u s ) s t i m u l i . g e t ( i ) ;
a s s o c s t r e n g t h += a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
}

i f ( a s s o c s t r e n g t h > m a x a s s o c s t r e n g t h ) m a x a s s o c s t r e n g t h = a s s o c s t r e n g t h ;

s i m u s = compStimUS ( s t 2 , f a l s e ) ; / / r e t r i e v e f i r s t−o r d e r a s y m p t o t e
i f ( s i m u s > s i m i l a r i t y t h r e s h o l d ) { / / o n l y u pda t e i f s i m a l a r i t y t o any i n t e r n a l d r i v e

/ / i s g r e a t e r than s i m i l a r i t y t h r e s h o l d
e r r o r = ( s i m u s − a s s o c s t r e n g t h ) ; / / t h e d i s c r e p a n c y be tween t h e

/ / compound a s s o c i a t i v e s t r e n g t h and t h e a s y m p t o t e
/ / up da t e t h e a s s o c i a t i v e s t r e n g t h o f each s t i m u l u s a c c o r d i n g t o t h e Rescor la−Wagner r u l e
f o r ( i n t j =0 ; j<s t i m u l i . s i z e ( ) ; j ++) {

s t 1 = ( S t i m u l u s ) s t i m u l i . g e t ( i ) ;
a l p h a = max a lpha ;
o l d v a l = a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
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a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]
[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ]

+= a l p h a∗b e t a∗e r r o r∗w e i g h t S i m i l a r ( s t 1 , s t 2 ) ; / / Re scor la−Wagner e r r o r u pd a t e
/ / f o r f i r s t−o r d e r c o n d i t i o n i n g

/ / a c c u m u l a t e e r r o r
a v g e r r o r += j a v a . l a n g . Math . abs ( o l d v a l−a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ]

[ s t 2 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ) ;
n u m e r r o r s ++; / / number o f a s s o c i a t i o n s upda ted
/ / f o r p u r p o s e s o f second−o r d e r c o n d i t i o n i n g
i f ( a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ]

[ s t 2 . g e t S t r e n g t h ( ) ] > m a x a s s o c s t r e n g t h )
m a x a s s o c s t r e n g t h = a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
}

}
}

i f ( m a x a s s o c s t r e n g t h == Double . MIN VALUE) m a x a s s o c s t r e n g t h = 0 ; / / no change .
/ / no second−o r d e r c o n d i t i o n i n g

a s s o c s t r e n g t h = 0 ;
i f ( p r e v i o u s s t i m u l i != n u l l ) {

/ / r e f i n e a s s o c i a t i v e model ( S−S ) f o r second−o r d e r c o n d i t i o n i n g
f o r ( i n t i =0 ; i<s t i m u l i . s i z e ( ) ; i ++) {

s t 2 = ( S t i m u l u s ) s t i m u l i . g e t ( i ) ;
b e t a = max be ta ;
/ / a c c u m u l a t e t o t a l a s s o c i a t i v e s t r e n g t h o f compound
/ / and m o d a l i t y s t r e n g t h
f o r ( i n t j =0 ; j<p r e v i o u s s t i m u l i . s i z e ( ) ; j ++) {

s t 1 = ( S t i m u l u s ) p r e v i o u s s t i m u l i . g e t ( j ) ;
a s s o c s t r e n g t h += ( Double . isNaN ( a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ) ? 0 :
a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]
[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ) ;

}

/ / t h e d i s c r e p a n c y o f t h e t o t a l a s s o c i a t i v e s t r e n g t h o f t h e compound
/ / and t h e maximum a s s o c i a t i v e s t r e n g t h o f t h e s u c c e s s i v e compound
/ / from f i r s t−o r d e r c o n d i t i o n i n g
e r r o r = ( m a x a s s o c s t r e n g t h − a s s o c s t r e n g t h ) ;
f o r ( i n t j =0 ; j<p r e v i o u s s t i m u l i . s i z e ( ) ; j ++) {

s t 1 = ( S t i m u l u s ) p r e v i o u s s t i m u l i . g e t ( j ) ;
a l p h a = max a lpha ;
o l d v a l = a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
/ / Rescor la−Wagner e r r o r c o r r e c t i o n f o r second−o r d e r c o n d i t i o n i n g . I n c l u d e s decay parame te r
a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t M o d a l i t y ( ) ]

[ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ]
+= a l p h a∗b e t a∗decay∗e r r o r∗w e i g h t S i m i l a r ( s t 1 , s t 2 )
∗( s t i m u l i . e q u a l s ( p r e v i o u s s t i m u l i ) ? 0 : 1 ) ;

/ / a c c u m u l a t e e r r o r f o r e p i s o d e
a v g e r r o r += j a v a . l a n g . Math . abs ( o l d v a l−a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ]

[ s t 2 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ) ;
/ / number o f a s s o c i a t i o n s upda ted
n u m e r r o r s ++;

}
}

}

double h a g g r e x p e c t a n c e = 0 , h e r r o r = 0 , m a x h a g g r e x p e c t a n c e = Double . MIN VALUE ;

/ / u pda t e p o l i c y f o r f i r s t−o r d e r c o n d i t i o n i n g
/ / f o r t h e e x p e c t a n c e memory
f o r ( i n t i =0 ; i<n e x t S t i m u l i . s i z e ( ) ; i ++) {

s t 2 = ( S t i m u l u s ) n e x t S t i m u l i . g e t ( i ) ;
s i m u s = compStimUS ( s t 2 , t rue ) ; / / r e t r i e v e f i r s t−o r d e r a s y m p t o t e .

/ / t a k e i n t o a c c o u n t whe ther a v e r s i v e / a p p e t i t i v e
b e t a = max be ta ;
/ / a c c u m u l a t e t h e a g g r e g a t e e x p e c t a n c e f o r t h e c u r r e n t r e s p o n s e and s t i m u l i compund
/ / t owards each s t i m u l u s o f t h e n e x t s t i m u l i compound
f o r ( i n t h =0; h<s t i m u l i . s i z e ( ) ; h ++) {

s t 1 = ( S t i m u l u s ) s t i m u l i . g e t ( h ) ;
h a g g r e x p e c t a n c e += h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ]

[ r e s p o n s e ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
}
i f ( s i m u s > s i m i l a r i t y t h r e s h o l d ) { / / same as above

f o r ( i n t h =0; h<s t i m u l i . s i z e ( ) ; h ++) {
s t 1 = ( S t i m u l u s ) s t i m u l i . g e t ( h ) ;
h e r r o r = s im us−h a g g r e x p e c t a n c e ; / / F i r s t−o r d e r e r r o r
a l p h a = max a lpha ;
o l d v a l = h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ]

[ r e s p o n s e ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ]

[ r e s p o n s e ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ]
+= a l p h a∗b e t a∗h e r r o r∗w e i g h t S i m i l a r ( s t 1 , s t 2 ) ; / / Re scor la−Wagner f o r

/ / f i r s t−o r d e r e r r o r c o r r e c t i o n
n u m e r r o r s e x p e c t a n c e ++;
a v g e r r o r e x p e c t a n c e

+= j a v a . l a n g . Math . abs ( o l d v a l − h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ]
[ s t 1 . g e t S t r e n g t h ( ) ] [ r e s p o n s e ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ) ;

}
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}
i f ( h a g g r e x p e c t a n c e > m a x h a g g r e x p e c t a n c e ) m a x h a g g r e x p e c t a n c e = h a g g r e x p e c t a n c e ;
h a g g r e x p e c t a n c e = 0 ;

}

/ / u pda t e p o l i c y f o r second−o r d e r c o n d i t i o n i n g
/ / f o r t h e e x p e c t a n c e memory
i f ( p r e v i o u s s t i m u l i != n u l l ) { / / o n l y up da t e i f t h e r e was a p r e v i o u s compound i n t h i s e p i s o d e

i f ( m a x h a g g r e x p e c t a n c e == Double . MIN VALUE) m a x h a g g r e x p e c t a n c e = 0 ; / / no change
f o r ( i n t i =0 ; i<s t i m u l i . s i z e ( ) ; i ++) {

s t 2 = ( S t i m u l u s ) s t i m u l i . g e t ( i ) ;
h a g g r e x p e c t a n c e = 0 ;
b e t a = max be ta ;

/ / a c c u m u l a t e reward e x p e c t a n c e
/ / f o r t h e p r e v i o u s compound and p r e v i o u s
/ / t owards each s t i m u l u s o f t h e c u r r e n t compund |
f o r ( i n t h =0; h<p r e v i o u s s t i m u l i . s i z e ( ) ; h ++) {

s t 1 = ( S t i m u l u s ) p r e v i o u s s t i m u l i . g e t ( h ) ;
h a g g r e x p e c t a n c e += h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ]

[ p r e v i o u s r e s p o n s e ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
}

/ /
f o r ( i n t h =0; h<p r e v i o u s s t i m u l i . s i z e ( ) ; h ++) {

s t 1 = ( S t i m u l u s ) p r e v i o u s s t i m u l i . g e t ( h ) ;
h e r r o r = m a x h a g g r e x p e c t a n c e−h a g g r e x p e c t a n c e ;
a l p h a = max a lpha ;
o l d v a l = h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ]

[ p r e v i o u s r e s p o n s e ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ;
h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ]

[ p r e v i o u s r e s p o n s e ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ]
+= a l p h a∗b e t a∗h e r r o r∗w e i g h t S i m i l a r ( s t 1 , s t 2 )
∗( s t i m u l i . e q u a l s ( p r e v i o u s s t i m u l i ) ? 0 : 1 ) ; / / Re scor la−Wagner e r r o r . Cancel

/ / i f c u r r e n t compund e q u a l s
/ / p r e v i o u s compound

n u m e r r o r s e x p e c t a n c e ++;
a v g e r r o r e x p e c t a n c e

+= j a v a . l a n g . Math . abs ( o l d v a l − h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ]
[ s t 1 . g e t S t r e n g t h ( ) ] [ p r e v i o u s r e s p o n s e ] [ s t 2 . g e t M o d a l i t y ( ) ] [ s t 2 . g e t S t r e n g t h ( ) ] ) ;

}
}

}

p r e v i o u s r e s p o n s e = r e s p o n s e ;
p r e v i o u s s t i m u l i = s t i m u l i ;
s t i m u l i = n e x t S t i m u l i ;
i f ( n u m e r r o r s > 1) a v g e r r o r /= n u m e r r o r s ;
i f ( n u m e r r o r s e x p e c t a n c e > 1) a v g e r r o r e x p e c t a n c e /= n u m e r r o r s e x p e c t a n c e ;
e p i s o d e s t e p ++;

}

p r i v a t e double w e i g h t S i m i l a r ( S t i m u l u s s1 , S t i m u l u s s2 ) {
re turn ( s1 . g e t M o d a l i t y ( ) == s2 . g e t M o d a l i t y ( ) && s1 . g e t S t r e n g t h ( ) == s2 . g e t S t r e n g t h ( )

? 0 . 0 : 1 ) ;
}

p u b l i c double g e t A v g E r r o r E p i s o d e ( ) {
re turn ( double ) ( a v g e r r o r / e p i s o d e s t e p ) ;

}

p u b l i c double g e t A v g E r r o r E x p e c t a n c e E p i s o d e ( ) {
re turn ( double ) ( a v g e r r o r e x p e c t a n c e / e p i s o d e s t e p ) ;

}

p u b l i c long ge tEpochs ( ) {
re turn epochs ;

}

p u b l i c i n t g e t B e s t R e s p o n s e ( j a v a . u t i l . V ec to r compound ) {
re turn chooseResponse ( compound , f a l s e ) ;

}

/∗
∗ Choose r e s p o n s e a c c o r d i n g t o a s s o c i a t i v e v a l u e and e x p e c t a n c e v a l u e combined
∗ or a c c o r d i n g t o e x p e c t a n c e memory o n l y .
∗ F i n a l l y , s e l e c t s r e s p o n s e s a c c o r d i n g t o a e p s i l o n−g re ed y p o l i c y
∗/

p r i v a t e i n t chooseResponse ( j a v a . u t i l . Ve c to r compound , boolean random ) {
double max outcome va l = Double . MIN VALUE,

o u t c o m e v a l = Double . MIN VALUE ;
i n t r e s p o n s e = 0 ;
double r o [ ] [ ] [ ] = new double [ env . getNumActions ( ) ]

[ env . ge tNumModa l i t i e s ( ) ] [ env . ge tNumSt r eng th s ( ) ] ;

f o r ( i n t i =0 ; i<compound . s i z e ( ) ; i ++) {
S t i m u l u s s t 1 = ( S t i m u l u s ) compound . g e t ( i ) ;
f o r ( i n t m2=0;m2<env . ge tNumModa l i t i e s ( ) ; m2++) {

f o r ( i n t s2 =0; s2<env . ge tNumSt r eng th s ( ) ; s2 ++) {
f o r ( i n t r =0 ; r<env . getNumAct ions ( ) ; r ++) {

r o [ r ] [ m2 ] [ s2 ] += h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ]
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[ s t 1 . g e t S t r e n g t h ( ) ] [ r ] [ m2 ] [ s2 ]∗
( combineMemories ? a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ]
[m2 ] [ s t 1 . g e t S t r e n g t h ( ) ] [ s2 ] : 1 ) ;

i f ( r o [ r ] [ m2 ] [ s2 ] > max outcome va l ) {
max ou tcome va l = r o [ r ] [ m2 ] [ s2 ] ;
r e s p o n s e = r ;

}
}

}
}

}

max ou tcome va lue = ( max ou tcome va l == Double . MIN VALUE ? 0 : max ou tcome va l ) ;

j a v a . u t i l . Random r = new j a v a . u t i l . Random ( ) ;

i f ( random ) {
i f ( r . nex tDoub le ( ) > ( 1 . 0 − e p s i l o n ) ) { re turn ( i n t ) ( r . nex tDoub le ()∗ env . getNumAct ions ( ) ) ; }
e l s e { re turn r e s p o n s e ; }

} e l s e re turn r e s p o n s e ;
}

/ / f o r v i z u a l i z a t i o n
p u b l i c double getMaxOutcomeValue ( ) {

re turn max ou tcome va lue ;
}

/∗
∗ ARL Lookahead s p e c i f i c :
∗ R e t r i e v e s t h e maximum a s s o c i a t i v e s t r e n g t h o f t h e g i v e n compound
∗ t owards any a s s o c i a t e d outcome
∗/

p r i v a t e double ge tSeconda ryAssocS t r eng thComp ( j a v a . u t i l . Ve c t o r compound ) {
double max assoc = Double . MIN VALUE ;
double agg r = 0 ;

f o r ( i n t m2=0;m2<env . ge tNumModa l i t i e s ( ) ; m2++) {
f o r ( i n t s2 =0; s2<env . ge tNumSt r eng th s ( ) ; s2 ++) {

agg r = 0 ;
f o r ( i n t i =0 ; i<compound . s i z e ( ) ; i ++) {

S t i m u l u s s t 1 = ( S t i m u l u s ) compound . g e t ( i ) ;
agg r += a s s o c i a t i v e m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ m2 ] [ s t 1 . g e t S t r e n g t h ( ) ] [ s2 ] ;

}
i f ( agg r > max assoc ) max assoc = agg r ;

}
}

re turn ( max assoc == Double . MIN VALUE ? 0 : max assoc ) ;
}

/∗
∗ ARL Lookahead s p e c i f i c :
∗ R e t r i e v e s t h e maximum e x p e c t a n c e v a l u e o f t h e g i v e n compound
∗ t owards any a s s o c i a t e d outcome f o r any r e s p o n s e
∗/

p r i v a t e double ge tSecondaryExpec tanceComp ( j a v a . u t i l . Ve c t o r compound ) {
double max outcome va l = Double . MIN VALUE ;
double agg r = 0 ;

f o r ( i n t m2=0;m2<env . ge tNumModa l i t i e s ( ) ; m2++) {
f o r ( i n t s2 =0; s2<env . ge tNumSt r eng th s ( ) ; s2 ++) {

f o r ( i n t r =0 ; r<env . getNumActions ( ) ; r ++) {
agg r = 0 ;
f o r ( i n t i =0 ; i<compound . s i z e ( ) ; i ++) {

S t i m u l u s s t 1 = ( S t i m u l u s ) compound . g e t ( i ) ;
agg r += h i e r a r c h i c a l m e m o r y [ s t 1 . g e t M o d a l i t y ( ) ] [ s t 1 . g e t S t r e n g t h ( ) ] [ r ] [ m2 ] [ s2 ] ;

}
i f ( agg r > max outcome va l ) max ou tcome va l = agg r ;

}
}

}

re turn ( max ou tcome va l == Double . MIN VALUE ? 0 : max ou tcome va l ) ;
}

/∗
∗ Compares t h e g i v e n s t i m u l u s t o t h e l i s t o f i n t e r n a l d r i v e s
∗ u s i n g t h e s i m i l a r i t y f u n c t i o n ( g a u s s i a n S i m ) and r e t u r n s t h e maximum s i m i l a r i t y
∗ I f parame te r e x p e c t a n c e i s t r u e , t h e n t a k e s i n t o a c c o u n t s i g n ( a v e r s i v e / a p p e t i t i v e )
∗/

p r i v a t e double compStimUS ( S t i m u l u s s t , boolean e x p e c t a n c e ) {
double max sim = 0 ;
i n t i n d e x = 0 ;
f o r ( i n t i =0 ; i<u n c o n d i t i o n e d s t i m u l i . s i z e ( ) ; i ++) {

S t i m u l u s us = ( S t i m u l u s ) ( ( O b j e c t [ ] ) u n c o n d i t i o n e d s t i m u l i . g e t ( i ) ) [ 0 ] ;
i f ( us . g e t M o d a l i t y ( ) == s t . g e t M o d a l i t y ( ) ) {

double gs = g a u s s i a n S i m ( s t . g e t S t r e n g t h ( ) , us . g e t S t r e n g t h ( ) ) ;
i f ( gs > max sim ) {

max sim = gs ;
i n d e x = i ;

}

149



}
}

re turn max sim∗( e x p e c t a n c e ? ( ( I n t e g e r ) ( ( O b j e c t [ ] ) u n c o n d i t i o n e d s t i m u l i . g e t ( i n d e x ) ) [ 1 ] ) . i n t V a l u e ( ) : 1 ) ;
}
/∗
∗ The s i m i l i r a t y f u n c t i o n as d e s c r i b e d i n t h e r e p o r t
∗/

p r i v a t e double g a u s s i a n S i m ( double va lue , double mean ) {
double ex = ( 1 / ( j a v a . l a n g . Math . s q r t (2∗ j a v a . l a n g . Math . PI )∗StdDev ) ) ,

nom = −(j a v a . l a n g . Math . pow ( v a l u e − mean , 2 . 0 ) / ( 2∗ j a v a . l a n g . Math . pow ( StdDev , 2 . 0 ) ) ) ,
den = −(j a v a . l a n g . Math . pow ( 0 , 2 . 0 ) / ( 2∗ j a v a . l a n g . Math . pow ( StdDev , 2 . 0 ) ) ) ;

re turn ( ex∗j a v a . l a n g . Math . exp ( nom ) ) / ( ex∗j a v a . l a n g . Math . exp ( den ) ) ;
}

}§ ¦

Listing B.2: Java code listing for Q-learner agent¨ ¥
/∗
∗ I m p l e m e n t a t i o n o f t h e Q−l e a r n i n g a l g o r i t h m
∗ N i c l a s K j a l l−Ohlsson , c o p y r i g h t 2005
∗/

p u b l i c c l a s s RLAgent implements Agent {

p r i v a t e i n t i d ; / / Agent i d number

/ / The g r i d wor ld e n v i r o n m e n t
p r i v a t e S i m u l a t o r env ;

/ / Q−t a b l e f o r s t a t e−a c t i o n v a l u e s
p r i v a t e j a v a . u t i l . HashMap Q t a b l e ;

/ / c u r r e n t s t a t e
p r i v a t e S t r i n g s t a t e ;

p r i v a t e double e p s i l o n = 0 . 9 1 ; / / e x p l o r a t o r y c o n t r o l parame te r
p r i v a t e double a l p h a = 0 . 0 1 ; / / l e a r n i n g r a t e
p r i v a t e double gamma = 0 . 9 ; / / d i s c o u n t f a c t o r

/ / t h e c u r r e n t b e s t s t a t e−a c t i o n va lue , g i v e n t h e c u r r e n t s t a t e
p r i v a t e double max q = 0 . 0 ;

p r i v a t e boolean l e a r n i n g = t rue ; / / upd a t e q−v a l u e s or n o t

p u b l i c double q f l u c t a g g r ; / / a g g r e g a t e a b s o l u t e e r r o r per e p i s o d e

p u b l i c long e p i s o d e s t e p = 0 ; / / number o f s t e p s a t end o f e p i s o d e

p r i v a t e long epochs = −1; / / epoch c o u n t e r

p r i v a t e double b e s t a c t i o n v a l u e ; / / c u r r e n t v a l u e o f t h e b e s t r e s p o n s e

/∗∗ C r e a t e s a new i n s t a n c e o f RLAgent ∗/
p u b l i c RLAgent ( S i m u l a t o r env , i n t i d ) {

Q t a b l e = new j a v a . u t i l . HashMap ( env . g e t S i z e X ()∗ env . g e t S i z e Y ( ) ) ;
t h i s . i d = i d ;
t h i s . env = env ;
t h i s . in i tAgentMemory ( ) ;

}

p u b l i c double g e t Q F l u c t E p i s o d e ( ) {
re turn ( double ) ( q f l u c t a g g r / e p i s o d e s t e p ) ;

}

p u b l i c long ge tEpochs ( ) {
re turn epochs ;

}

p u b l i c double g e t B e s t A c t i o n V a l u e ( ) {
re turn b e s t a c t i o n v a l u e ;

}

/∗
∗ The Gr idwor ld c a l l s t h i s method t o r e t r i e v e t h e b e s t q−v a l u e f o r a g i v e n s t a t e
∗/

p u b l i c i n t g e t B e s t A c t i o n ( S t r i n g s t a t e ) {
i n t b e s t A c t i o n = 0 ;
i f ( Q t a b l e . c o n t a i n s K e y ( s t a t e ) ) {

double q v a l u e s [ ] = ( double [ ] ) Q t a b l e . g e t ( s t a t e ) ,
b e s t A c t i o n V a l u e = Double . MIN VALUE ;

f o r ( i n t i =0 ; i<q v a l u e s . l e n g t h ; i ++) {
i f ( q v a l u e s [ i ] > b e s t A c t i o n V a l u e ) {

b e s t A c t i o n = i ;
b e s t A c t i o n V a l u e = q v a l u e s [ i ] ;
b e s t a c t i o n v a l u e = b e s t A c t i o n V a l u e ;

}
}

} e l s e {
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b e s t a c t i o n v a l u e = 0 ;
}
re turn b e s t A c t i o n ;

}

p u b l i c i n t ge t ID ( ) {
re turn i d ;

}

p u b l i c double g e t A l p h a ( ) {
re turn a l p h a ;

}

p u b l i c double getGamma ( ) {
re turn gamma ;

}

p u b l i c double g e t E p s i l o n ( ) {
re turn e p s i l o n ;

}

p u b l i c vo id s e t A l p h a ( double a l p h a ) {
t h i s . a l p h a = a l p h a ;

}

p u b l i c vo id setGamma ( double gamma ) {
t h i s . gamma = gamma ;

}

p u b l i c vo id s e t E p s i l o n ( double e p s i l o n ) {
t h i s . e p s i l o n = e p s i l o n ;

}

p u b l i c vo id s e t L e a r n i n g ( boolean l e a r n i n g ) {
t h i s . l e a r n i n g = l e a r n i n g ;

}

/ / i n i t i a l i z e t h e a s s o c i a t i v e memory
p u b l i c vo id in i tAgentMemory ( ) {

Q t a b l e = new j a v a . u t i l . HashMap ( env . g e t S i z e X ()∗ env . g e t S i z e Y ( ) ) ;
q f l u c t a g g r = 0 . 0 ;
epochs = −1;

}

/ / i n i t i a l i z e e p i s o d e
p u b l i c vo id i n i t E p i s o d e ( ) {

q f l u c t a g g r = 0 . 0 ;
e p i s o d e s t e p = 0 ;
s t a t e = env . g e t L o c a t i o n R e p r e s e n t a t i o n ( i d ) ;
epochs ++;

}

/∗
∗ T h i s method i s c a l l e d by t h e e n v i r o n m e n t
∗ f o r each s t e p o f t h e e p i s o d e . T h i s i s t h e f u n c t i o n a l p a r t o f t h e
∗ Q−l e a r n i n g a l g o r i t h m .
∗
∗/

p u b l i c vo id doStep ( ) {
i n t a c t i o n = t h i s . c h o o s e A c t i o n ( s t a t e ) ; / / choose a c t i o n a c c o r d i n g t o e p s i l o n−gr ee d y e x p l o r a t i o n p o l i c y

double r eward = env . doAct ion ( a c t i o n , i d ) ; / / pe r fo rm t h e a c t i o n and r e c e i v e reward

i f ( l e a r n i n g ) {
S t r i n g n e x t s t a t e = env . g e t L o c a t i o n R e p r e s e n t a t i o n ( i d ) ; / / p e r c e i v e t h e n e x t s t a t e
i n t n e x t a c t i o n = t h i s . c h o o s e A c t i o n ( n e x t s t a t e ) ; / / s e t t h e g l o b a l MAX Q v a l u e o f t h e n e x t s t a t e

double o l d v a l = lookupQValue ( s t a t e , a c t i o n ) ; / / g e t t h e q−v a l u e o f t h e c u r r e n t s t a t e−a c t i o n p a i r

se tQValue ( s t a t e , a c t i o n , ( o l d v a l + a l p h a∗( r eward + gamma∗max q − o l d v a l ) ) ) ; / / up da t e t h e q−v a l u e t a b l e

double newval = lookupQValue ( s t a t e , a c t i o n ) ;

q f l u c t a g g r += j a v a . l a n g . Math . abs ( newval−o l d v a l ) ; / / a c c u m u l a t e a b s o l u t e e r r o r

s t a t e = n e x t s t a t e ;
}

e p i s o d e s t e p ++;
}

p r i v a t e void se tQValue ( S t r i n g s t a t e , i n t a c t i o n , double v a l u e ) {
double q v a l u e s [ ] = ( double [ ] ) Q t a b l e . g e t ( s t a t e ) ;
q v a l u e s [ a c t i o n ] = v a l u e ;
Q t a b l e . p u t ( s t a t e , q v a l u e s ) ;

}

p r i v a t e double lookupQValue ( S t r i n g s t a t e , i n t a c t i o n ) {
double q v a l u e s [ ] = ( double [ ] ) Q t a b l e . g e t ( s t a t e ) ;
re turn q v a l u e s [ a c t i o n ] ;

}
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p u b l i c vo id p r i n t Q V a l u e s ( S t r i n g s t a t e ) {
System . o u t . p r i n t l n ( s t a t e + ” ” + Q t a b l e . s i z e ( ) + ” : ” ) ;
i f ( Q t a b l e . c o n t a i n s K e y ( s t a t e ) ) {

double q v a l u e s [ ] = ( double [ ] ) Q t a b l e . g e t ( s t a t e ) ;
f o r ( i n t i =0 ; i<q v a l u e s . l e n g t h ; i ++) {

System . o u t . p r i n t ( q v a l u e s [ i ] + ” ” ) ;
}
System . o u t . p r i n t l n ( ) ;

}
}

/∗
∗ choose r e s p o n s e a c c o r d i n g t o e p s i l o n−gre ed y e x p l o r a t i o n p o l i c y
∗/

p r i v a t e i n t c h o o s e A c t i o n ( S t r i n g s t a t e ) {
i n t b e s t A c t i o n = 0 ;
max q = 0 ;
i f ( ! Q t a b l e . c o n t a i n s K e y ( s t a t e ) ) {

double q v a l u e s [ ] = new double [ env . getNumActions ( ) ] ;
f o r ( i n t i =0 ; i<q v a l u e s . l e n g t h ; i ++) {

q v a l u e s [ i ] = 0 ; / / j a v a . l ang . Math . random ( ) ;
}
Q t a b l e . p u t ( s t a t e , q v a l u e s ) ;

}
double q v a l u e s [ ] = ( double [ ] ) Q t a b l e . g e t ( s t a t e ) ;

j a v a . u t i l . Random r = new j a v a . u t i l . Random ( ) ;

f o r ( i n t i =0 ; i<q v a l u e s . l e n g t h ; i ++) {
i f ( q v a l u e s [ i ] > max q ) {

max q = q v a l u e s [ i ] ;
b e s t A c t i o n = i ;

}
}

i f ( l e a r n i n g ) {
i f ( r . nex tDoub le ( ) > ( 1 . 0 − e p s i l o n ) ) { re turn ( i n t ) ( r . nex tDoub le ()∗ env . getNumAct ions ( ) ) ; }
e l s e { /∗ Sys tem . o u t . p r i n t l n (” B e s t a c t i o n ”+ b e s t A c t i o n ) ; ∗/ re turn b e s t A c t i o n ; }

} e l s e {
/ / Sys t em . o u t . p r i n t l n (” B e s t a c t i o n ”+ b e s t A c t i o n ) ;
re turn b e s t A c t i o n ;

}
}

}§ ¦
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Appendix C

Result data and experiment
definitions

The tables below provide an index of files on the CD-ROM for:

• the Grid world configuration files for the different experiments described in the
report

• the results data files for the different experiments described in the report

• the Excel sheets with prepared results data files

Replace ”d:” with the letter of your CD-ROM drive.
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Appendix D

User manual for learning
simulator

D.1 Starting the simulator
1. In order to run the learning simulator, type the following at the command line

(replace d: with the letter of your CD-ROM):

java -jar d:\ARL\code\ARL\dist\ARL.jar Simulator

2. At the initial screen of the learning simulator in figure D.1, do one of the follow-
ing:

(a) Select File->New. This will open a dialog in which a new Grid world con-
figuration can be defined (figure D.2). In this dialog the textfield for ”Num-
ber of horizontal grids:” represents the number of squares of the Grid world
along the x axis; enter a positive integer. The textfield for ”Number of ver-
tical grids:” represents the number of squares of the Grid world along the
y axis: enter a positive integer. The textfield for ”Size of grids:” represents
the visual size of each square of the Grid world on the screen; enter a pos-
itive integer. At the bottom of the dialog, there are two checkboxes. The
”Reset RL agent memory”-checkbox will reset the associative memory of
the Q-learner agent upon pressing the OK button. The ”Reset ARL agent
memory”-checkbox will reset the associative memory and the expectance
memory of the ARL agent upon pressing the OK button. Pressing the OK
button will load a new Grid world configuration (for further instructions
see section D.2). Pressing the Cancel button will result in the dialog being
closed and no action taken.

(b) Select File->Load. This will open a dialog in which an existing grid world
configuration and algorithm parameters can be loaded from file. These files
have the extension ”.lrn”. Select a ”.lrn” file from a given location at the at-
tached CD-ROM disc. The ”Reset RL agent memory”-checkbox will reset
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the associative memory of the Q-learner agent upon pressing the Open but-
ton. The ”Reset ARL agent memory”-checkbox will reset the associative
memory and the expectance memory of the ARL agent upon pressing the
Open button. Pressing the Open button will load the selected Grid world
configuration file (for further instructions see section D.2). Pressing the
Cancel button will result in the dialog being closed and no action taken.

(c) Select File->Exit. This will close the learning simulator.

D.2 Running the learning simulator
You now have an instance of the learning simulator running with either a new Grid
world configuration or an existing configuration loaded from file. The learning simu-
lator GUI as illustrated in figure D.4 should now be visible on the screen. The learning
simulator GUI has 7 panels, each of which are described in the following list:

• Gridworld:

– The orange square denotes the start location

– The white square denotes the goal location

– The yellow square denotes the current location of the Q-learner agent

– The pink square denotes the current location of the ARL agent

– Black squares denote obstacles

– A selected square has a yellow edge

• RLAgent

– The Run button will start learning for the Q-learning agent, if the Learning
checkbox is selected.

– The ”Reset agent” button will reset the Q-learning agent’s associative mem-
ory and the epochs counter, and close any open results file.

– The Epochs label shows the current epoch of the agent’s learning period.
To the right of the epochs label, the policy cost is reported

– Textboxes Alpha, Gamma, Epsilon refer to learning rate, reward discount-
ing, and exploration rate

– When the VP checkbox (View Policy) is selected, the policy value and
policy cost will be displayed in the Gridworld panel

• ARLAgent

– The Run button will start learning for the ARL agent

– The ”Reset agent” button will reset the ARL agent’s associative memory
and the epochs counter, and close any open results file.

– The Epochs label shows the current epoch of the agent’s learning period.
To the right of the epochs label, the policy cost is reported
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– StDev (sensitivity of similarity function), Max Alpha (learning rate), Max
beta (learning rate), epsilon (exploration), Sim. threshold (ARL trace spe-
cific), Decay (reward discounting)

– When the VP checkbox (View Policy) is selected, the policy value and
policy cost will be displayed in the Gridworld panel

– Select radio button ”Trace” for ARL trace, and ”Lookahead” for ARL
lookahead.

– To combine the associative memory and the expectance memory, select the
”Combine memories” checkbox.

– The table at the bottom of the ARLAgent panel lists the internal drives of
the ARL agent.

– The ”Remove US” button deletes the selected stimulus from the ”internal
drives”-table.

• Spatial location

– The ”Selected location” label displays the coordinates of the currently se-
lected square in the Gridworld panel, or nothing when no square is selected.

– The Obstacle checkbox adds/removes an obstacle to the currently selected
square.

– The Start checkbox defines/undefines the currently selected square as the
start location.

– The Goal checkbox defines/undefines the currently selected square as the
goal location.

– The Reward label shows the reward value of the currently selected square.

– The ”Sync reward” button will synchronize the reward structure of the ARL
agent and the Q-learner agent.

– In the ”Template list”-table, the currently defined stimuli are shown.

– The ”Stimuli list”-table displays the stimuli compound at the currently se-
lected location.

– The ”Delete selected” button deletes the selected stimulus from the ”Stim-
uli list”-table.

– The ”Delete” button deletes the selected stimulus from the ”Template list”-
table.

– The ”Add” button adds a new stimulus to the template list.

• Expectance convergence graph: Live plotting of Average absolute fluctuation
in expectance memory per epoch

• Associative memory convergence graph: Live plotting of Average absolute
fluctuation in associative memory per epoch

• Q-value convergence graph: Live plotting of Average absolute fluctuation in
q-values per epoch
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D.2.1 Running an experiment
1. Select File->Results. This will open the results dialog (figure D.5).

2. Click the ”...”-button to the right of the ”ARL path” textbox, to open a results
data file for the ARL agent.

3. Click the ”...”-button to the right of the ”RL path” textbox, to open a results data
file for the Q-learner agent.

4. The ”Report policy cost @ every”-spinner to the right of the ”ARL path” textbox
defines the frequency at which the policy cost is reported to the ARL agent results
data file and to the ARLAgent panel.

5. The ”Report policy cost @ every”-spinner to the right of the ”RL path” textbox
defines the frequency at which the policy cost is reported to the Q-learner agent
results data file and to the RLAgent panel.

6. Do either:

(a) Click the OK button to open the results data files. A confirmation dialog
will appear; click OK to confirm or Cancel to return to the results dialog.
When OK is clicked, any previously open results data files will be closed,
and the newly specified will be opened. The control will return to the main
screen (figure D.4).

(b) Click the Cancel button. The results dialog will disappear and no action
will be taken.

7. Click the Run button in either the ARLAgent panel or the RLAgent panel, and
let the agent run for as many epochs as you wish.

8. When finished, first click the ”Pause” button, and then do either:

(a) Click the ”Reset agent” in either or both the ARLAgent panel and the RLA-
gent panel to close the results data files, and reset the agent’s memory.

(b) To open an existing or define a new grid world environment without reset-
ting the agent’s memory (e.g. as in phase 2 of the generalization experi-
ments) goto step 2b of enumeration list D.1, and follow the instructions.
Then go to step 1 of this list.

D.2.2 Defining a new stimulus
1. Click the Add button of the ”Spatial location” panel. A new stimulus will appear

at the end of the ”Template list”-table.

2. Select the desired modality and strength for the stimulus from the dropdown
boxes in the ”Template list”-table.
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D.2.3 Adding a stimulus to the Gridworld
1. Select a square in the Gridworld panel

2. In the ”Add to” column of the ”Template list”-table of the ”Spatial location”
panel, click the ”Lo...”-button for the desired stimulus

3. The stimulus will appear in the ”Stimuli list”-table for the selected location of
the Gridworld panel

D.2.4 Deleting a stimulus from the Gridworld
1. Select a square in the Gridworld panel

2. Select the stimulus that you wish to delete from the ”Stimuli list”-table of the
”Spatial location” panel

3. Click the ”Delete selected” button in the ”Spatial location” panel

D.2.5 Adding/deleting a stimulus from the list of internal drives of
the ARL agent

1. In the ”Add as” column of the ”Template list”-table of the ”Spatial location”
panel click the US button for the desired stimulus.

2. The stimulus will appear in the ”Internal drives”-table of the ARLAgent panel

3. In the Category column of the ”Internal drives”-table of the ARLAgent panel
select whether the added stimulus shall be aversive or appetitive in the provided
dropdown box.

4. Make sure the added stimulus is out of focus for the change in category to take
effect (i.e. click anywhere else in the ARLAgent panel).

D.2.6 Defining obstacles, start location, and goal location
• To define an obstacle, do:

1. Select a square in the Gridworld panel

2. Check/uncheck the Obstacle checkbox of the ”Spatial location” panel

• To define the start location, do:

1. Select a square in the Gridworld panel

2. Check/uncheck the Start checkbox of the ”Spatial location” panel

• To define the goal location, do:

1. Select a square in the Gridworld panel

2. Check/uncheck the Goal checkbox of the ”Spatial location” panel
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D.2.7 Synchronizing the environment reward structure of the ARL
agent and the Q-learner agent

Click the ”Sync reward” button of the ”Spatial location” panel.

D.2.8 Selecting a spatial location
Click inside a square of the Gridworld panel to select it.

D.2.9 Adding/removing obstacles
• Click and drag inside the Gridworld panel to define obstacles, and release mouse

button to stop.

• Alt-Click and drag to remove obstacles, and release mouse button to stop remov-
ing obstacles.

• Select a square in the Gridworld panel. In the Spatial location panel, check-
/uncheck the Obstacle checkbox.

D.2.10 Showing/hiding live plots
In the view menu (figure D.7), check/uncheck the desired checkbox to show/hide one
of live plots. (”ARL (AM) Graph” = Associative memory convergence graph, ”ARL
(EM) Graph” = Expectance convergence graph, ”RL Graph” = Q-value convergence
graph).

D.2.11 Saving a Grid world configuration and algorithm parame-
ters

1. Select File->Save. A save dialog will appear (figure D.6).

2. Choose a file or type in a file name at a location of your choice.

3. Do either:

(a) Click the Save button to save the grid world configuration and algorithm
parameters

(b) Click the Cancel button to take no action and close the Save dialog. The
control will return to the main screen (figure D.4).

164



Figure D.1: The initial screen of the learning simulator

Figure D.2: Dialog box to define new grid world environment
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Figure D.3: Dialog box to load an existing grid world environment configuration, and
algorithm parameters
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Figure D.4: The learning simulator with a loaded grid world configuration, and algo-
rithm parameters

Figure D.5: Dialog to define results data files for each agent, and results reporting
parameters
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Figure D.6: Dialog to save a grid world configuration, and algorithm parameters

Figure D.7: The view menu
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